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THE SELF-ADAPTIVE GRID CODE, SAGEr2

Carol B. Davies* and Ethiraj Venkatapathyt
Ames Research Center

SUMMARY

The original SAGE code (Version 1) is described in NASA TM 103905 (1992). This new

report on Version 2 includes all the information in the original publication plus all upgrades and
changes to the SAGE code since that time. The two most significant upgrades are the inclusion of

a finite-volume option and the ability to adapt and manipulate zonal-matching multiple-grid
files. In addition, the original SAGE code has been upgraded to Version 1.1 and includes all

options mentioned in this report, with the exception of the multiple grid option and its

associated features. Since Version 2 is a larger and more complex code, it is suggested (but not
required) that Version 1.1 be used for single-grid applications. This document contains all the
information required to run both versions of SAGE. °

The formulation of the adaption method is described in the first section of this document.

The second section is presented in the form of a user guide that explains the input and execution
of the code. The third section provides many examples.

Successful application of the SAGE code in both two and three dimensions for the solution

of various flow problems has proven the code to be robust, portable, and simple to use. Although

the basic formulation follows the method of Nakahashi and Deiwert, many modifications have
been made to facilitate the use of the self-adaptive grid method for complex grid structures.

Modifications to the method and the simple but extensive input options make this a flexible and
user-friendly code. The SAGE code can accommodate two-dimensional and three-dimensional,

finite-difference and finite-volume, single grid and zonal-matching multiple grid flow problems.

1. METHOD

1.1 Introduction

Solution-adaptive grid methods have become useful tools for efficient and accurate flow

predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact
discontinuities, and shear layers require careful distribution of grid points to minimize grid error

and thus produce accurate flow-field predictions. Frequently, the generation of the first grid
topology does not adequately capture these flow structures. It has been shown that an effective

way of obtaining accurate solutions is by intelligently redistributing (i.e., adapting) the original
grid points based on the initial flow-field solution and then computing a new solution using the

adapted grid. The cost efficiency of grid adaptions in terms of CPU time depends on the basic
formulation of the adaptive-grid solver. A short historical review and a list of references on the

adaptive grid procedure used in the SAGE code is given in Davies and Venkatapathy (1991).

* Sterling Software, Palo Alto, Ca.
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The self-adaptive grid procedure outlined by Nakahashi and Deiwert (1985) has evolved

into a flexible tool for adapting and restructuring both two-dimensional (2-D) and three-

dimensional (3-D) grids. The adaptive-grid method is based on grid-point redistribution through
local error minimization. The procedure is analogous to applying tension and torsion spring

forces proportional to the local flow gradient at every grid point and finding the equilibrium
position of the resulting system of grid points. The multidimensional problem of grid adaption is

split into a series of one-dimensional (l-D) problems along the computational coordinate lines.
The reduced 1-D problem then requires a tridiagonal solver to find the location of grid points

along a given coordinate line. Multidirectional adaption is achieved by the sequential application
of the method in each coordinate direction. This approach produces an extremely CPU-efficient

algorithm.
The tension forces direct the redistribution of points to the strong gradient regions. The

torsion forces relate information between the families of lines adjacent to one another, to

maintain smoothness and a measure of orthogonality of grid lines. These smoothness and

orthogonality constraints are direction-dependent, since they relate only the coordinate lines that
are being adapted to the neighboring lines that have already been adapted. This implies that the

solutions are nonunique and depend on the order and direction of adaption.
The Self-Adaptive Grid codE (SAGE) code has been built with many flexible elements that

make it user-friendly. The second section of this report is a user guide, which is independent of
the first section and can be used as a separate document. However, the nomenclature and details

of the grid adaption procedure within the code consistently follow the analysis, allowing the user
to understand the code and implement any individual changes, if desired. The user guide

describes the input parameters and their effects as well as the adaption procedure, execution
commands, and subroutines, and provides many examples.

1.2 Formulation of Adaptive-Grid Scheme

As stated in the introduction, adaption takes place as a series of one-dimensional

adaptions. Figure 1 illustrates this concept: three constant k planes of an initial grid are shown in
Fig. l(a) and a flow-field solution has been obtained using this unadapted grid. The points in this

grid are then adapted to the flow solution, starting on the first line (j=l) on the lower plane k=l.
In Fig. l(b), the first plane has already been adapted and the second plane is the current adaption

plane. The current adaption line (j) is shown, with previous lines already adapted and
subsequent lines awaiting adaption.

non-

adapted
plane

current

adaption

plane

first

adapted
plane

Figure 1. 3-D adaption; (a) Initial grid;

(b) directional adaption.

The third plane is still in its original
form. Adaption is performed in this

line-by-line, plane-by-plane manner
until all requested planes are

complete. It is then possible to

perform an adaption in a second
direction, "adapting" on top of the
already adapted grid. The number

and order of adaptions are arbitrary

and depend on the type of flow
problem and the purpose of the

adaption.
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Figure 2 shows a segment

of the current adaption line in
more detail. The lower plane
has already been adapted and the

upper plane is currently being
adapted. Four forces control the

redistribution of points along
each line: the two tension

springs that act on each side of a
node, and the two torsion

springs that control the

smoothness of the grid. The

tension forces co cluster the

redistributed points into the
high-gradient regions. The

torsion forces (x and _) restrain
the tension forces to maintain

continuity between sequentially

adapted lines. As shown in Fig.

marching direction within plane

" Ig_ adapted
4"-- plane, k-1

ca =tension spring between each node on current adaption line

z =torsion spring within current plane at previously adapted line

_g =torsion sprin_ between planes at current line on already adapted plane

Figure 2. Line-by-line adaption

showing tension and torsion forces.

a 2-D surface, where the arc length at A (i.e.,

s_.i.k, with sI = 0) along the current adaption

line, j, is defined as

si = Si_l + _[(x i _ xi_l )2 + (Yi - Yi-I ;2 + (Zi - Zi-1 )2 (1)

A tension force, f(o_,), is defined to
act between each i and i+1 node such that

coi_i = K (2)

where co, the tension constant, is a

weighting function based on the flow

gradient, As_= s_+_- s,, and K is the resultant

force. To redistribute the points along a line
with the minimum solution error, the

adaptive procedure defines the weighting
function as proportional to the derivative of

2, the '_ force acts from the previously adapted line within the current plane and the _1/force acts
from the previously adapted line in the preceding plane.

A 3-D grid is described in terms of its computational coordinate directions (i,j,k) and its
physical coordinates (x,y,z). An adaption can take place in any or all of the computational

coordinate directions and the SAGE code permits any combination. However, for clarity, this
analysis assumes that all adaptions are performed in the i direction and that stepping (within a
plane surface) occurs in the j direction. Thus k is the marching direction for plane stepping. The

current adaption line is thus j in the plane k where lines j-l, j-2, etc., have already been adapted.
In addition, this report uses the term "plane" to mean any 3-D coordinate surface.

The first step in the formulation of the adaption algorithm is to consider the adaption of a
single line, with no torsional constraints

(i.e., no smoothness control). Figure 3 shows i-1 i i+l

Jend i --

1 . i

_st ien d

Figure 3. Current adaption line j on a 2-D surface.

c j



the flow variable (Nakahashi and Deiwert 1985). In this formulation, co is defined as a function of

the normalized flow gradient, ], such that

03, = 1+ A f_ (3)

where A and B are constants directly related to the grid spacing and are chosen to maintain the

grid intervals to within the limits (AsMm and ASMAX)set by the user on input. A and B are defined

in appendix I of this section.
Equation (2) is written for each node on the line, giving a 1-D formulation that can be

solved directly for As_. Taking the sum of both sides of Eq. (2) gives

n. nX__l]_ Asj = s,,_ = K
l=l /=1 031

giving

Substituting back in Eq. (2), we obtain

/.-.

/ t=l 031

As, = s 03i (5)

In the SAGE code, this 1-D solution technique is used along the initial adaption line of the initial
adaption plane, where no directional information is available. Continuing this approach for

successive line-by-line adaptions will not create a mesh that is sufficiently smooth for input into
computational flow-field codes. To ensure a more reasonable grid, the redistribution of points
(driven by the tension springs) is constrained by torsion terms defined on two adjacent adapted

lines: one on the current plane and one on the preceding plane. Within the current plane, the

torsion parameter _ represents the magnitude of the torsion force that maintains smoothness and

orthogonality between the node (i,j,k) and the nodes (i,j-l,k) and (i,j-2,k). This is the only torsion

parameter available on the initial surface. For subsequent surfaces, the torsion parameter
constrains the movement between the same node (i,j,k) and the nodes (i,j,k-1) and (i,j,k-2) on

adjacent computational planes. The torsion terms are evaluated as "ti(s_-s i) and _/i(sT.-si),

where the torsion parameters z and _ define the magnitude of the torsion forces and s' and s °
define their inclination (i.e., orthogonality and smoothness).

To introduce the torsion forces to the system of equations, we first rewrite Eq. (2) to
represent the force balance,

03i(si+t - si) - 03i_l(si - s,,_I ) = 0 (6)

and then add the torsion terms to obtain

03i (Sl+l -- Si ) -- 03i-I ($i -- 5i-I ) + T'i (S; -- S i ) + Iff i ($_ -- S i ) = 0 (7)

which is rearranged to produce the coefficients of the tridiagonal matrix used to solve for si,

co__lsi__- (03_+ o__1 + "c,+ V,)s_ + 03,s,÷_ = -xis' - _/,s7 (8)

This equation is written for each interval along the adaption line, producing a system of (n,- 1)

equations. Since st and s. are known, there are n,- 2 rows in the matrix. This equation is solved

iteratively (updating 03i at new s,) until z_,i=lI_n' [s(nP_iS_a-])[< 10-3X Smax. This system of equations is



central to the adaption technique used in the SAGE code and most of the description that follows
pertains to deriving the coefficients of this equation.

1.3 Auxiliary Equations

1.3.1 Tension parameter, o3,. As described in the formulation, o3_ acts as a tension force in

the interval (S,l- s,) and can be imagined to be a spring (aligned with the grid line) connecting

the two grid points, as shown in Fig. 3. This tension parameter is defined in Eq. (2) as

o3iAsi = K

where fi is a function of the gradient of the flow variable, q:

ffi = f' -f"l'" and f, = Oq---_'= q'÷_-q' (9)
fm,a -- fm,_ Os AS,

The standard format of the user's input flow-field file contains the conservative flow

variables Q, as defined in the plotting software package PLOT3D (1990), which (for a 3-D dataset)

assumes these flow variables are p, pu, pv, pw, and e. Since the adaption is based on a scalar
function q, this function can be evaluated as a user-specified combination of flow variables Q.

Pressure, Mach number and temperature ratio are also included as adaption variables and are
internally computed, assuming perfect gas relations. However, Q need not be restricted to

conservative flow variables, but can be any combination of user-specified flow variables that
represent the flow field.

To remove the unwanted oscillations from the discrete evaluation, fi is smoothed by

adding a second derivative term, i.e., fi =.75fi+.125(f_+_-f,-j). By default, two smoothing passes

are made, but this can be overridden by changing the filter input control parameter, NFILT. The

tension parameter, c0,, is smoothed in the same way.

1.3.1.1 A and B. As seen in Eq. (3), o3 is also a function of A and B. These variables

are the important elements of the self-adaptive nature of the scheme because they control the
size limits of the grid spacing. A and B are computed from the user-supplied maximum and

minimum allowable grid spacings, aSUAx and AsulN. These are relative values of mesh size and

allow the user to specify the proportion of largest to smallest As in the final adapted grid.

The value of A is constant throughout the grid adaption and is given by

A- ASMAx 1 (10)
ASMIt¢

The value of B is computed (by an iterative process) for each j line to provide

input _SMI N = COnlputed As,m.

That is, the computed minimum grid spacing is equal to the user-requested value. Appendix I
gives a detailed description of the derivation of these two parameters.

1.3.1.2 Torsional effect on the evaluation of co. As just noted, the function of

variables A and B is to control the size limits of the adapted-grid mesh spacing and, as described
in appendix I, B is computed from the 1-D Eq. (2). Thus the addition of the torsion terms is

somewhat inconsistent with the value of B, and the resulting grid spacings may give values
slightly outside the requested limits. To pro_;ide for additional control, a weighting factor is



appliedto to such that cai = (1 + Aft)to,, where co,, is the weighted tightness factor. When equation

(8) is solved, each As, is tested and if it does not lie within the requested spacing limits, ca,, will be

computed; otherwise cat. =l.0. If ASi < ASMm, we need to relax (decrease) the value of ca_ to

produce a larger As_ in the next iteration. If Asi is too large, toi should be increased. We therefore
use the modifier

1. as i 1. ,_

ca,, -- _ f-"_s-_Mm+ l ) °r to,, =_ f-_s--_'_xMax+1)

depending on whether Asi < ASMtN or Asi > AsMax. Equation (8) is therefore solved using the

modified values of co. It should be noted that ca, = 1.0 in the regions of side-spacing control (see

section 1.4.3) where As is permitted to be outside the specified limits.

1.3.2 Torsion terms. As shown in Eq. (7), the torsion terms, xi(s:-s _) and _i(s_-s i) are

added to the 1-D equation to preserve the required smoothness and orthogonality of the grid.

They are constructed as being analogous to the behavior of torsion springs. Consider first the

torsion term within the plane, f('O. A torsion force, T, relates the node at (i,j-l,k) to the node

(i,j,k), is proportional to the turning angle, 0, shown in Fig. 3, and is defined as

Ti = _,./-1.k (II)

where x is a torsion-related constant. The next step is to relate this torsional force to the

previously defined parameters on the adaption line. Since 0 is generally small, we can

approximate 0 i by (s'-s_)/IDA' I (see Fig. 3), where (s'-s i) is a function of the inclination angle

computed from the proportioned orthogonality and straightness vectors, as described in section

1.3.2.3. In addition, we assume that K is proportional to the maximum to, (=I+A) and the local

aspect ratio of the grid cell. Hence we can write

_.0_,,_ (si+I _ I - s,-I.j-t ) (12)
2IDA']

where _. is the proportionality coefficient and is an input quantity. The variable _ used in Eq. (8)
can thus be defined as

_'ca"_'(si+1'/-I - Si-l'J-I ) (13)
_i = 2IDA,j2

The evaluation of _ is similar, with the node (i,j-l,k) replaced by (i,j,k-1) and a

proportionality coefficient k" defined that is analogous to k such that:

_'*to"'_'( si+l'/'_-I - Si-t4"k-l ) (14)
qi = 21BA'r

where IBA'Iis the distance from (i,j,k-D to the location of s_/. k. The evaluations of Ioa'l and IBA'I
are given in appendix II.

1.3.2.1 Evaluation of s' and s*. These two variables, seen on the right-hand side of

Eq. (8), are calculated from the torsion vectors and provide the direction of the smoothness and

orthogonality constraints. The location of s" lies at the intersection of the projection of the



within-plane torsion vector Fi with the arclength vector si along the current adaption line. The
A,

location of r," is similarly determined from the between-plane torsion vector ti . Figure 4 shows

the two unit torsion vectors: E, acting from point D and intersecting the line AC at A', and f',

acting from point B and intersecting the same line at A', such that

s; = s i + AA' and s_ = si + AA' (15)

In general, neither F nor F* will directly intersect the line AC, and the projection of the torsion

vectors onto _ is required. An example of the projection vectors is shown in Fig. 5 where the

projection of ? onto the k plane intersects Y at A'. A full description of the calculation of the
intersection is given in appendix II.

D ik plane at j ij plane at k

/

(i,j,k) A/A* __,

o. 'alto.(i,j-1,k) D

Q

--"] plane at jik

,_ +l,j,k)

G

Figure 4. Torsion vectors, f and f'. Figure 5. Calculation of A', intersection
of torsion and streamwise vectors.

1.3.2.2 Torsion vectors ? and F°. Figure 6 shows in detail the within-plane torsion

vector f, and the associated base vectors (h = f(_,f_), and _). The vectors in these figures are

represented on a 2-D surface, and it should be remembered that the shown f is actually the

projection of f seen in Fig. 4. The unit vector f, associated with the nodal point (i,j,k) [but acting
from the point (i,j-l,k)] is defined as °

t_i,j,k= _[G_i + (1 - G);_i ] (16)

where

C, is the input parameter that defines the percentage of straightness to orthogonality,

_i is an average straightness vector from (i,j-2,k) to (i,j-l,k), and

r/, represents the orthogonality vector between the j-1 line and the node (i,j,k) and is a

function of /; and t/vectors described below.



Thebetween-planetorsion vector t'° which
acts from the node (i,j,k-1), is similarly defined as

t_*j., = _lC737 + (1 - C )hl I (17)

where C7 is the input proportion parameter, and

37 and hi are the equivalent straightness and
normal vectors.

It should be noted that Figs. 4 and 6 show

vectors intersecting the j line in the interval
(i,i+l); however, this is not necessarily the case. In

general, we assume that the projection of _.

intersects the j line in the interval (I,I+I).

Appendix II describes a general method used to
compute the intersection of a vector with the
vector _.

0 E

j-2

Figure 6. Torsion vector as a combination
of normal and straightness vectors, in 2-D.

1.3.2.3 Evaluation of vectors _, _, and r/. The unit vector _i (direction AC in Fig. 7) is

the arclength vector from si to si+1 along a j line. It is defined as

_,.j = sx i + Sy + sz k
i , i

where

1 1 1

Sx, = ISi'-_](Xi+l.j,k -- Xid.k ), Sy, _- _i_(Yi+l.j,k -- Yi,j,k ) and sz, = -_i_(Zi+l.j.k -- Zi.j.k)

The unit vector 3, (direction ED in Fig. 7) is defined as the sum of three straightness

[---] k plane

I k-2 plane

vectors, d__,, 4 and 4;1, where

4. = 4] +¢) +4,£
C

such that

1 1

dx, = -[-_i_(xi.;_Lk-- xi, j_Zk ), dy, = _i_( yi.;_l,k -- Yi,j-2.k )

and

1

4, = - )

Therefore,

ei = "-_( i-1 +
I

If the line j-2 does not exist (such as at the
second line from a physical boundary), it is
assumed that _ = tl.

Figure 7. Straightness vectors, 3 and 3".
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The straightness vector between planes, _7, is shown as /_B in Fig. 7. It is computed like

above, with points (i,j-l,k) and (i,j-2,k) replaced with (i,j,k-1) and (i,j,k-2) respectively.
The vector h is a combination of two vectors:

k_ J _ ik plane.at]
j-1

Q (i,j-l,k-1) \ (i,j-l,k) |I

(i-l,j-l,k)

Figure 8. Normal vectors Ii and b.

Inil

where _i represents orthogonality to the ik

plane through the j-1 line, and /_i the

orthogonality to the ik plane through the j

line, as shown in Fig. 8. The parameter t_

proportions /_ and _ and is defaulted to 0.5,

changing only at the upper and lower

marching boundaries, as discussed in section
1.4.4. The calculation of a normal vector to a

point in a 3-D surface needs defining: for

example, in Fig. 8, the vector fi acts at D,

perpendicular to the ik surface at j-1 (the
surface that contains G, F, M, and Q). In this

case, there are four possible planes to choose
from (MDF, MDQ, GDF, and GDQ) and thus the

definition of the _ and /_ vectors is the

average of the normals to each of the four planes, when the planes exist. Since two vectors define

the plane in which they lie, the normal to that plane is obtained by taking their cross product.

The vector /_ would also act at D but is perpendicular to the ik plane at j. Appendix HI describes

the general calculation of the normal to a given plane at a given point.

In addition to the within-plane orthogonal constraints, orthogonality is also controlled

between planes by a function of the vector h', defined as

ln,I
The normal _/" acts at point B, perpendicular to the /j plane at k-l, and /_" acts at A, but

perpendicular to the plane at k.

1.4 Enforcement of Boundary Conditions.

The ability to modify the adaption techniques in boundary regions substantially improves
the flexibility of the adaptive scheme. The adaption domain is defined by the user and may be
equal to, or a subset of, the physical grid. A boundary occurs at the limits of the adaption domain

defined by the user. Within a plane, there are two types of boundaries: marching boundaries (all

points along the initial and final adaption lines) and edge boundaries (at i = ist and i= ie,,a). There

are also initial and final surface boundaries to take into consideration. Figure 9 shows a 2-D

example of an adaption domain as a subset of the physical grid, and illustrates the two types of
boundary lines when marching in the j direction. Note that if marching had been in the i

direction, the boundary definitions would have been reversed.

9



is,-4!1
II
[I

(1,1)

ist=3

marcht

iend=12

Lgboundary

15,12)

side edge

I r_" boundary

4-rag=5

(15,1)

Figure 9. Adaption domain as subset of
physical domain.

By internally amending the previously defined

variables of G. t_, and X in the boundary regions, it is

possible to maintain physical characteristics at
boundaries, allow for multiple passes, provide

continuity across grid boundaries, and simplify

multiple grid adaptions. Specialized boundary
conditions, such as wall shape preservation and

periodic boundaries, are discussed in separate
sections.

1.4.1 Treatment of initial marching boundary

line. If the initial adaption line is within the physical
domain, a smooth transition will be required across

the starting internal boundary. For example, this
situation occurs when adapting in zones; each zone
has different flow features and the user may wish to

march up to a certain line using one set of

parameters, then continue marching using a new set.
The common boundary between the two zones must

remain unchanged when starting the second adaption pass. This feature is controlled by the

input parameter rag. When mg> 0, a smooth transition from external grid lines (e.g., those in the

already adapted zone) to internal lines is created by maintaining the same grid points along the
initial line and then incrementally introducing the input adaption parameters. For example,

when stepping to the second adaption line, as much straightness as possible is maintained by

setting Ct = 1 (see Eq. (16)). At each subsequent line, Ct is gradually decreased until it equals the

user-supplied input value. The number of lines stepped before the full effect of the new

parameters is felt depends on rag; C t will linearly decrease until mg lines have been adapted. An

example of this can be seen in Fig. 9, in which ds, = 4 and mg= 5. The grid points along J = 4 will

remain unchanged while those along j = 8 will be fully adapted to the input control parameters.
The code controls the adaption parameters for lines in between. Consequently, we define a

variable n,. as

and replace the value of G used in Eq. (16) by

mg - j

mg - ._t

(20)

C,. =G(1-n,,)+n,,

At the same time, the value of K is increased to K(l + 5n,.) (thus increasing the magnitude of the

torsion term) so that this amendment to C, is effective. After mg lines, n,, = 0, thus returning

C tand _. to their original values. Note that the computation of _ along the Jst + 1 line is a function

of the Jst - ! line (if it exists), and this will also help in the merging process.

A similar parameter, m_, is used when the first plane must remain unchanged (e.g., at a

multigrid boundary) and subsequent planes are gradually adapted.

1.4.2 Treatment of final boundary line. Another discontinuity will occur between the final

adaption line and any subsequent lines external to the adaption domain. Since the adaption

10



processis a marching scheme, it is not possible to use the same merging concept described earlier.

On request (through the MARCH input parameter), the grid points on the remaining external
lines will be redistributed with the same proportions as the points on the final adapted line. In

addition, nonadapted planes can be proportioned with respect to lines on previously adapted
planes. This is not an adaption to the flow field, but provides a more acceptable interface between

the computational and physical domains.

1.4.3 Treatment of side-edge boundary. A smooth transition will also be needed at the

side-edge boundaries if the adaption domain is internal to the given grid, i.e., if is, > 1 or

ien,l< imax. Figure 10(a) shows an example in which the fixed external grid spacing is denser than

the first redistributed points, giving a discontinuous effect across the boundary. If the user

requests continuity of mesh spacing across the side-edge boundaries (by setting the input

parameter NEDGE, (%)_ 0), a modification is made to the tension parameter, co. Consider the

start-edge boundary at i= is, along line j. We wish to enforce some value on c0_ that will give a

value of aa_ close to the value of aa;,_ 1. To do this, we find the average ca&_ along the converged

j-1 line and replace coI by coaa/&_i _l.j.

This value remains fixed during the

iteration, but is merged into the updated

values of co close to the boundary. In

general, this implies that 0o2, co3 and co4

will be amended, however an additional

option is available (using input
parameters MG1 and MG2) to spread the
effect further into the adaption domain.

Figure 10(b) shows the effect of this
process, giving a more appropriate

spacing in the vicinity of the i,

boundary. The end-edge boundary is
handled in a similar manner.

The side-edge spacing often needs

side edge boundary

-_ ist

(b) sid_ge boundary

_ist

Figure 10. Control of side-edge boundaries.
(a) with no edge control; (b) with edge control.

to be improved even when the adaption domain coincides with the physical domain. If an

adaption pass generates inappropriate side-edge spacing, the code can be rerun with ng set to non

zero in an attempt to improve the spacing by using the above technique. In this case we do not

have an external &_, and _lS2. j is used instead of &_,-i,j This will usually prevent the spring

constants from pulling the lines too far off the boundary.

The variable ng can be set to initiate computation for either or both side edges.

1.4.4 Treatment of orthogonality at boundaries. The code provides the choice of

constructing grid lines that are as orthogonal as possible to a marching boundary, either to the

final line in a plane or to the entire final plane. To accomplish this, the normal vector ,_ (and/or

,/*) is emphasized over the straightness vector (by decreasing Ct when the adaption line is close

to a marching boundary line. For even greater control, the coefficient t, is modified to emphasize

either _ or/_, depending on whether the initial-line or end-line boundary is being considered. To

ensure that the modifications to these torsion coefficients sufficiently affect the computation, the

value of _. is simultaneously increased to accentuate the torsion term. Since not all marching

11



boundaries are physical boundaries, an input option is available that will override this emphasis

on orthogonality for either boundary.

1.5 Preservation of Initial Wall Boundary Shape

In applications for which the shape of the wall boundary is defined by large geometric
gradients, such as for turbine blades, sharp corners, and the leading edges of airfoils and wings,
sufficient points need to be placed in the appropriate regions of the initial grid to accurately

define the geometry. If flow-field gradients are weak in these regions, the standard grid-
redistribution algorithm will cause points to be dispersed, leaving insufficient points to properly

describe the boundary. To maintain necessary clustering in these regions, on user request a new
variable is introduced that is a function of the geometry gradients that define the boundary shape.

The weighting parameter now becomes a function of both flow-field gradients and geometry
gradients. The solution procedure will therefore redistribute the points into regions of high

geometry gradients as well as into regions of high flow-field gradients. Both the start and end
wall boundaries are treated. A merging technique is used to integrate the boundary and internal

redistribution, so that the internal flow is controlled only by the flow-field gradients.

The original weighting function was defined in Eq. (3) as

co= l+ Af a

where f is a function of 3q/3s. When the geometry option is invoked, f becomes a function of

both 3q/Os and Og/3s, where f(Og/3s) is computed as the radius of curvature at the wall
boundaries. The radius of curvature is defined as

where the derivatives are computed from the spline coefficients.
The full effect of the geometry function should be felt at the wall boundaries; it should not

be a factor in the internal grid redistribution. Hence the final weighting function takes the form

where f = CJ(q) + Cgf(g) and the constant Cq normally equals 1. The constant C_ equals 1 when

the upper and lower wall boundaries are being adapted, but it must be decreased away from the

walls until C, = 0 internally. The value of the aspect ratio was chosen to drive the rate of decrease

of Cg; i.e., Cg =l-4A s, where As is the aspect ratio at the maximum radius of curvature.

Regardless of the value of Am, Cg remains positive for a minimum of four steps from the

boundaries and decreases smoothly. When the upper boundary is approached, C_ must be turned

on when necessary and increased with each step, and f(g) becomes a function of the upper wall

boundary only.

It is also possible to adapt only to the geometry gradient. If this is requested, Cq = 0 and

C_ = 1 throughout the flow, and fig) is computed for each adaption line, based on the local

geometry of that line. This option has proven to be a useful tool for improving the starting grid
before any solution is obtained. Points will be smoothly clustered with respect to the geometry
gradients.
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1.6 Finite-Volume Grids

In applications using finite-volume techniques, each flow-field variable (q) is evaluated at

the cell center instead of the nodal point of the grid. These cell centers are usually positioned at
the average of the surrounding grid points (four for 2-D and eight for 3-D). This creates a solution

file that has one less point in each direction than the grid file. The finite volume module in
SAGE interpolates the q values onto the grid points before performing the adaption. On

conclusion the q values are re-interpolated at the new cell centers.
A feature of finite volume grids is the definition of the outermost boundary cells in all

computational directions as 'ghost cells' containing specified flow values. The adaption

procedure destroys these values and SAGE employs a very simple method to replace them: on
output, each ghost cell contains the same value of'q as the adjacent internal cell. It is therefore

highly recommended that the user re-apply the boundary conditions before processing the new
grid. This is true for both 2-D and 3-D grids and implies that if a user wishes to adapt one plane

for testing purposes, an internal plane would be more appropriate.

1.7 Multiple Grids

When investigating the flow around complex structures, computational grids are fre-

quently organized in multiple-grid format. This enables each individual grid to be of manageable

size while maintaining a single dataset and also allows for overlapping grids. The original SAGE
code could only adapt single grids and it was therefore necessary to separate the grids before

adaption. Version 2 of SAGE can read and write datasets in multigrid format and also provides a
new input control parameter to specify which grid to adapt. In addition, a major new feature in

the SAGE code is the capability to transfer data between matching zonal boundaries (with 1:1
mapping) in separate grids. Some or all boundaries of each individual grid will match in some

part to boundaries in one or more of the other grids. It is important that common boundaries,
where data in separate grids represent the same location in computational space, retain the same

grid and flow distributions. This can be seen in the simple two-part multiple grid shown in Fig.
11(a), where the shaded plane is common to both grids. After adaption, both planes must still

contain matching data.

(a)

grid I

matching

Zone

grid 2
(b) adaption

direction,
grid 2

adaption
direction,

grid I

_(c)

preferred
adaption
direction

Figure 11. Simple multi-zoned grid. (a) Common plane; (b) restricted adaption direction with

original SAGE; (c) preferred adaption direction, using plane transfer procedure.

The adaption technique used in SAGE is a marching scheme, and therefore the order and
direction of adaption have a marked effect on the final grid-point redistribution. The only way
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the original SAGE code could adapt the two grids and still retain the common boundary data is
shown in Fig. 11(b)." the common plane had to be adapted first, with plane marching occurring in

opposite directions. The new export/import feature in version 2 enables the order of adaption
shown in Fig. 11(c): after grid 1 has been adapted, adapted data from the final plane can be
transferred to the first plane in grid 2. Then, using the merging feature (MGPLS) to prevent the

first plane of grid 2 from being corrupted, adaption can continue in the same plane marching
direction. All three steps (adaption of grid 1, data transfer, adaption of grid 2) can be accomplished
in the same execution pass. Figure 11(c )shows only the simplest multigrid structure. In reality,

multiple grids may contain many grids, with partial matching surfaces to more than one grid.
Input options are available to handle this and examples can be found in Section 3.

1.8 Discussion

1.8.1 Flexibility and segmentation. The vector approach used in the analysis provides for

great flexibility in the use of the SAGE code. The user can choose the adaption direction and order
of sequential adaptions without concern for the computational data structure. Multiple passes are
available with no restraint on stepping directions: for each adaptive pass (or sweep), the user can

choose a completely new set of adaptive parameters. This facility, combined with the capability of

edge-boundary control, enables the code to handle multidimensional zonal grids without losing
continuity along the common boundaries. For patched grids, the multiple-pass capability allows

complete adaption. It was mentioned in the introduction that the adaptive technique does not
produce a unique grid. This non uniqueness enables the user to choose the most appropriate

solution to the grid adaption.

1.8.2 Blanked grids. Certain types of complex multiple-grid structures utilize the facility
in PLOT3D that blanks out regions of overlapping grids. When this option is invoked, the

number of points in each grid line need not be constant, i.e., IMAX can vary for each line. A 2-D
version of SAGE has been modified to handle this situation, but in most applications it is not

practical. The major drawback occurs when the number of points on a line decreases with each
step. Depending on the flow-field gradients and the currently adapted line, the "dropped" points

can produce a discontinuous grid structure. The starting location of the adaption can be chosen to
ensure only an increasing point count, but this removes flexibility. This blanking feature is
therefore not included in the standard version of SAGE since it detracts from the simplicity of the

code. Nevertheless, the blanking option has become a useful tool for complex overlaid grid

structures, and it is anticipated that the next version of SAGE will contain this option. It is

suggested that the authors be contacted for further information.

1.8.3 Cyclical and Periodic Boundaries. Certain classes of grids used by flow-field solvers
are not suitable for adaption using the basic grid formulation described thus far. The self-adaptive

grid procedure is a marching scheme, i.e., the solution along each line is influenced only by
previously adapted lines. The adaption of the first grid line is based on flow gradients only, but as
marching proceeds, the redistribution of points is dampened by the torsion effect. As a result, the

final adaption line will be somewhat less adapted to the flow-field gradient than the initial line.
This implies that the scheme cannot be directly applied to cyclical and periodic grid structures,
since common and/or matching boundaries will show as discontinuities. For 2-D problems, these

difficulties have been overcome by including both an iterative and a rearrangement procedure

that can be requested by the user. However, these options are not provided in this version of
SAGE even when TWOD is specified, and interested users should contact the authors to obtain a

copy of SAGE2D and its documentation. For 3-D grid structures, maintaining periodicity at

14



matching planes is a more difficult task.Sincethe initial grid and flow-field on matching first
and last planesare identical, setting the plane torsion parameter(_.') to zero produces matching
adapted grids on these planes. In this case, the adaption of intermediary planes has no influence

on subsequent planes.

1.9 Appendices

1.9.1 Appendix I: Derivation of A and B.

A and B provide self-adaptiveness to the adaption scheme. These two parameters ensure
that all repositioned grid nodes maintain grid spacing to within the user-requested mesh-size

limits (AsMm and ASMAX).

1.9.1.1 Calculation of A. We wish to relate A to the input values of ASMm and

AsMax. A is constant throughout the entire mesh, and hence the 1-D relationship given in Eq. (2)

holds. From the original definition of ] in Eq. (9), ],_ = 1 and ]mi, = O; therefore, from Eq. (3) we

have COm,_=l+A and co,,j,=l. From Eq. (2) (rewritten as Asi=K/co _) we can see that the

minimum As will occur at K/CO,,,_. Similarly, the maximum As occurs at K/com, .. We therefore

wish to set ASMm = K/(l+A) and ASMAx =K. These can be solved simultaneously: by eliminating

K we get the expression given in Eq. (10)

A = _____A&_1
ASMm

1.9.1.2 Calculation of B. This calculation is more complex. B is found by an iterative
procedure and will change for each j line. The objective is to determine which value of B will

give the minimum computed Asi equal to the requested minimum, ASMm" For each value of B

there exists a minimum As,. (An example of a plot of B vs. As,,i, is shown in Fig. 12). We need to

find B at the requested _MIN" To do this, we assume an initial value of B (= l.O), evaluate co, and

then solve for the new As using Eq. (5). Although Eq. (5) is true only for the initial line, it is

assumed here to hold for all j in order to simplify the B calculation. If IASmN -rain As_"_ is small,

an acceptable value of B has been found. If not, a new B is computed from /_+_J = B _"_+ AB ("j, co is
reevaluated, and the procedure repeated.

B _"_ can be found from the definition

_B (ASmN - min As[ __)min( As, ) = _B-_olimi AB"_ (21)

As mentioned in the calculation of A, we know that As i is a minimum when co, = l + A,

and by substituting this in Eq. (5) and differentiating, we obtain

where

(22)
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We know that

Hence•the next step is to evaluateO_p/_B.With this definition of qL we can take the summation

sign out of the differential and obtain

t (o,j  atco,j

+ A/p)

n, - B -
_ a_'ff logfl
-- -- L+ ¢.,_2

1=1 Wl

Equation (22) can now be solved, and after substituting
for

n, 1 = st,_

from Eq. (5), we obtain

(1)

L,,,,/' ¢
B=I.0 converged B

Figure 12. Calculation of B.

_-_min(As,): A(1 +.__A)[min(&si)]2_ ]p log_
Smax I=1 (0_

Finally zkB can be obtained from Eq. (21), giving B.

1.9.2 Appendix II: The intersection of a 3-D vector, _, with the arclength vector, _. This

technique is used to obtain the /_ vectors used in the orthogonality terms and to find the location

of s', and si . For example, to determine s, we need the segment in which the torsion vector

from the grid point (i,j-l,k) intersects the j line. To evaluate the direction cosines of the /_ vector,

we need to find the segment l --->l + 1 along the j line that contains the intersection of a vector

acting from (i,j-l,k) that is normal to the j segment. For s_ and /_', we are concerned with the line

j in the plane k-1. In all cases, the technique for finding l is the same.

Figure 5 shows the case of the torsion vector _, computed for the point (i,j,k) and

emanating from the point (i,j-l,k) at D. This vector (t') most likely will not lie in the plane

described by ADC (or the equivalent I plane) and thus its projection onto the plane is required.

The value of s" in the solution equation lies at A', the intersection of the projection of i onto the

ADC plane and the arclength vector, _. The vector _ (= nj +n_.] +nzk) is the unit normal to the

plane ADC and is computed by the technique described in Appendix III. Both [AA'iand iDA"l are

required in the code.

From vector addition, we can write

--@

IAA "I,_= AD+ IDNI[ -INA 'IFr (23)

16



Since the coordinates of A and D are known, A_D(=a_,'d+ay]+afQ can be evaluated, hence

IAA'_ IDN[ and INA'[ are the three unknowns. By equating coefficients of i', j, and /_ in the vector

Eq. (23), we can obtain a set of three equations with three unknowns:

Iaa'lsx= ax + IDgltx -Iga'[n_, [AA'tsy = ay + IDNIt, -INa'lny and Iaa'lsz= as + IONItz -Iga'ln_

These equations can be readily solved for Iaa'lby computing the relevant determinants.

IDA'[ is also found by utilizing vector addition. We have

oa' (= Ioa'loa') = IAA'I -ao

and, since the lengths of the left- and right-hand sides are equal,

Ioa'l 2 ---claa'ls - a_)2 + ¢laa%- a,: +¢laa'l  - a )2

1.9.3 Appendix llh Definition of normal vectors. The vector normal to a plane is required

for the calculation of vectors _, _', /_, and /_*. This appendix describes the derivation of a general

unit-vector normal, h, at a given point (i,j,k) and normal to the plane ik passing through the

constant j-1 line. This specific orientation is analogous to _. Figure 8 shows such a vector acting
at D, that represents the normal to the shaded surface. In the figure it can be seen that there are

four possible planes passing through (i,j-l,k): GDF, FDM, MDQ, and QDG. Any vector normal
required in the code is calculated as the average of the normals to each of these four planes.

(When the node (i,j-l,k) is on or close to a boundary, only one or two of these planes will exist.)

The normal to a plane is derived from the cross product of two vectors lying within the
plane, with care taken to ensure the correct order of the operation (this is why the input grid
should be organized as a right-handed system). In the example shown in Fig. 8, the four cross

products are DFx DM, DFx GD, QDx GD, and QDx DM. The required unit normal is thus the
unit vector representing the sum of these four vectors.

This picture gives an idealized view of the defined planes. In reality, some of the required

lines have already been adapted and some have not. In Fig. 8, the point F could be significantly
different from D, since D is an already-adapted point and F is still part of the initial grid. The code

solves this problem by forming a block of data around the current j line that includes all i for

lines j - 1_ j + 1 for planes k - 1 _ k + 1. Lines that have not yet been adapted (e.g., j+ 1 at k or j- 1

at k+l) are proportioned with respect to the si at j; this relocates the points for a smoother

computational effect.
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2. SAGE USER GUIDE

2.1 Overview

The SAGE code is based on the self-adaptive grid method developed by Nakahashi and

Deiwert (1985). This guide contains information that will enable the user to run the code with
little knowledge of the mathematical concepts employed in the development of the adaption

technique. Included is a detailed description of the input-control parameters, along with

routine descriptions and nomenclature. The code stands alone and has been run on many
computer systems. Users wishing to understand and/or amend the code can find the details of

the mathematical background in the first section of this document.
The first step in the code is to read two data files: one that contains the coordinates of

the grid (x,y,z) and another that contains the corresponding flow-field variables, q. It is
assumed that both these files are in the binary format (given on the next page) associated with

the plotting software package PLOT3D. A single-grid, finite-difference, 3-D format is assumed

unless re-specified by the user. The next step is to adapt the grid with respect to the user-
supplied input-control parameters. Adaption takes place as a sequence of one-directional
adaptions, with the input-control parameters determining the order of adaption. Each plane

(i.e., 3-D surface) is adapted in one direction only before stepping to the next plane. Figure 1

(see page 2) shows a small section of a 3-D grid: adaption in the i direction (stepping in j) has
already been performed on the first plane. The code then steps to the next plane and performs
the same directional adaption on this plane. A 3-D adaption is performed by a sequence of

adaptions: once the grid has been adapted in one direction, the adaption can be repeated with a
new parameter-input set describing another direction. (It should be noted that different orders

of the adaption direction will produce different adapted-grid solutions). When all adaptions
are complete, the code sends the redistributed grid points and the corresponding interpolated
flow variables to two new data files, also in PLOT3D format.

The analysis that generates the algorithms used in the code is given in detail in the first

section of this report. Briefly, the redistribution of points is controlled by parameters related to

torsion and tension springs, and by the maximum and minimum allowable grid spacings.
Along each grid line, (x,y,z) is transformed to a 1-D arc-length variable, s. If we assume that

adaption (within a plane, k) steps in the j direction, the tension spring constants, ca, are

evaluated at each point (i,j,k); i.e., c0, = f(s,.j, k) and are a function of the gradients of the user-

chosen flow-field variables. The torsion parameters (shown in Fig. 2) _i =f(s_.j.k,Sij-l.k,sij-2.k)

and _/_ = f(s_.;.k,S_.j.___,S,.;.k_2) are the link between the current line and the previously adapted

lines. These are the parameters that maintain the integrity of the grid by controlling

straightness and orthogonality within the plane and between planes. With the evaluation of

these variables, a system of (n, - 2) equations (given in Eq. 8) is developed for the current j line

and solved as a tridiagonal system. Once the adaption is complete for the current j line, the
code steps to the next j line (either forward or backward) and repeats the same procedure. At

the end of the current k plane, the code moves to the next plane and the process is repeated.

There are eight major steps taken in the code:

1. Input of three data files: initial grid, flow-field solution, and user-control parameters

2. Initialization and reorganization of data for computational purposes
3. Adaption along the start line on the start plane with the 1-D technique
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4. For eachsubsequentj line on the initial plane;
a. Computation of variables that define the torsion and tension springs (co and z),

and hence coefficients of the tridiagonal matrix defined by Eq. (8)
b. iteration to find new values of s, and hence (x,y,z)

5. Repetition of step 4 until all lines are complete on this plane
6. For each subsequent k plane, computation of the torsion spring v for inclusion in

the coefficients of the solution Eq. (8)

7. Repetition of steps 4 through 6 until all planes have been adapted
8. Output of new grid and interpolated flow-field files in the original format

2.2 Execution of the SAGE Code

The following is an example of the command file to run the SAGE code on a UNIX

system. SAGE is written in FORTRAN and is self-contained; sage is the executable module.

cp xyz.grd fort.7 ! copy grid file to unit 7
cp q.fun fort.8 ! copy solution file to unit 8

sage < sage.inp ! run SAGE code with sage.inp containing user control parameters
cp fort.lO xyz.out ! name the output adapted grid file

cp fort.11 q.out ! name the interpolated function file

where sage.inp is in namelist format ($NAMEL).

{Note: Users on Silicon Graphics Inc. machines will need to amend the READ(5,NAMEL,...)
statement in subroutine INITIAL to READ(5,NML=NAMEL,...)}.

The remaining files are in PLOT3D format:

xyz.grd contains the initial grid points (stored as a right-handed coordinate system)

q.fun contains the flow-field variables to which the grid is to be adapted
xyz.out contains the adapted grid points

q.out contains the flow-field variables interpolated on the adapted grid

In addition, an output message file is associated with unit 6, which is often defaulted to the

user's output device. For other operating systems, the user must appropriately assign the six
input/output files.

The following are the read statements for single-grid 3-D PLOT3D binary/unformatted
input files:

xyz.grd:
READ(7)

READ(7)

q.fun:
READ(8)
READ(8)

READ(8)
where

IMAX,JMAX,KMAX
(((X(I,J,K),I=I,IMAX),J=I,JMAX),K=I,KMAX),

(((Y(I,J,K),I=I,IMAX),J=IJMAX),K=I,KMAX),
(((Z(I,J,K),I=I,IMAX),J=I,JMAX),K=I,KMAX)

IMAX,JMAX,KMAX
FSMACH,ALP,RE,TIME

((((Q(I,J,K,N),I=I,IMAX),J=I,JMAX),K=I,KMAX),N=I,NDIM)

IMAX=number of points in the i direction of the grid file
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JMAX=numberof points in the j direction

KMAX=number of points in the k direction
NDIM=number of Q variables (default=5)

As seen in the above format, five flow-field variables are expected in the Q file. PLOT3D

preassigns p, pu, pv, pw and e, but since the SAGE code requests only the index of the
function, any variables may be stored. Note that it is possible to handle any number of flow-

field variables by changing the value of NDIM in the parameter statement at the beginning of
each subroutine and recompiling. Also contained in the parameter statement are the grid

dimensional variables ID, JD, KD and IMX, currently set at 75. These are used to define the

required maximum dimension of the grid arrays. Because of the internal switching of data,
these values may not exactly coincide with IMAX, JMAX, and KMAX. If the assigned code

dimensions are too small, a message will be sent to the user stating the minimum dimension
requirements for the current application. If the grid is in multiple grid format, an additional

record occurs at the beginning of each file stating the number of grids and the grid dimensions
are supplied in dimensioned arrays. FSMACH, ALP, RE, and TIME are not used in the code

and may contain dummy values. They are part of the PLOT3D package and are displayed on

the output plots.

2.3 User Input Parameters

The file sage.inp is the user-supplied, input-parameter control file. The grid adaption is
based on the user's choice of these input parameters, which are listed and briefly described

below. This is followed by a more complete explanation of each parameter. The input file

sage.inp uses the namelist format, since generally only a few of the input parameters need to
be changed from the default value set by the code. These default values are shown in

parentheses in the list given in section 2.3.1 and must be input by those using a nonstandard
version of Fortran. If more than one adaption pass is to be made (for example, a two- or three-

directional adaption), the subsequent adaptions can be made on the adapted grid by linking up
to 10 sets of namelist inputs within the same sage.inp file. For multiple grids, these sets can

also contain multiple export/import passes.
Before describing the input parameters, some terminology needs to be clarified:

The term physical domain is used to reference the complete grid defined by the input

grid file, i.e., the grid bounded by IMAX, JMAX, and KMAX. The _daption domain is the part
of the grid, as defined by the input-control file, that is to be adapted, i.e., (IST,IEND),

(JST,JEND), (KST, KEND). These two domains can be equivalent. The direc0on i, j, or k refers
to the direction of the grid coordinates as defined by the order in which they are stored in the

grid file. The first index (normally containing x) is named the i direction, the second index is
the j direction, and the third index the k direction. This implies that if data happened to be

stored as (z,x,y) instead of (x,y,z), i would represent the z direction. Regardless of the order, the
data must be stored as a _ coordinate system. The adaption direction is used to

define the 1-D line along which adaption (redistribution of points) takes place. In the analysis
and in the descriptions below, this direction is always i for convenience, but the user may

request i, j, or k. There are two stepping directions: one within the plane, defined as j in the
analysis, and the other in the direction of plane marching, defined as k. Although the analysis

and descriptions in this report assume this particular order of adaption and stepping, the code
makes no such a priori assumptions, since the order is controlled by the user's input-
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parameterfile. Referenceis also made to grid boundaries. Side-edg_ boundaries refer to the
start and end points at the edge of the adaption line (assumed to be i in the analysis). These are

the edges that are controlled by the NEDGE parameter. Marching boundaries are the start and
end lines of the stepping (within the plane) direction (assumed to be j). Adaption close to these
lines are affected by the parameters ORTHS(1), ORTHE(1), and MGSTEPS, as well as by some

internal controls. Planes juxtaposed to start and end planes are affected by ORTHS(2),
ORTHE(2), and MGPLS.

2.3.1 Parameter control file, sage.inp

The input parameters, with their default values (in parentheses) and short descriptions,
are

$NAMEL
IST
IEND

JST
JEND
KST

KEND

(1)
(IMAX)
(1)
0MAX)
(1)
(KMAX)

first adaption line in i direction

last adaption line in i direction
first adaption line in j direction

last adaption line in j direction
first adaption line in k direction

last adaption line in k direction

IJPLANE

JKPLANE

IKPLANE

(TRUE)

(FALSE)

(FALSE)

the adaption surface lies in the (i,j) plane, with

plane stepping occurring in the k direction
the adaption surface lies in the (j,k) plane, with plane stepping

occurring in the i direction
the adaption surface lies in the (i,k) plane, with

plane stepping occurring in the j direction

ISTEP

JSTEP
KSTEP

(FALSE)

(TRUE)

(FALSE)

=.true. for stepping in the i direction within the plane: it cannot
=.true. if JKPLANE =.true.

=.true. for stepping in the j direction within the plane

=.true. for stepping in the k direction within the plane

INDQ
IQ(8)

(1)
(o)

index of adaption flow-field variable, q; default of l_p
enables a combination of q variables to drive the adaption

RDSMAX

RDSMIN
(2.0)

(.5)
relative maximum allowed _:'_M,_X >-1.0

relative minimum allowed z_:_Mi N < 1.0

CLAM(l)

CLAM(2)

CT(1)

CT(2)

(.Ol)
(.OOOl)
(.5)
(.5)

=_., coefficient of torsion parameter _, 1 < _ < 10-6

=K', coefficient of plane torsion parameter, _; same range as _.

proportion of "straightness" to "orthogonal" for torsion vector t"

as CT(1), but proportions plane torsion vector, t'°

NEDGE (0) override control on side-edge adaption:
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MG1 (0 or 4)
MG2 (0 or 4)

used with NEDGE: number of points to merge start-side spacing
used with NEDGE: number of points to merge end-side spacing

INTER (2)

NFILT (2)

order of interpolation: 2, 3, or 4

number of passes to filter q and co

MGSTEPS (0)
MGPLS (0)

MARCH (FALSE)
MARCHPL (FALSE)

number of merging lines for within-plane torsion controls

number of merging planes for between-plane torsion controls
=.true. to extrapolate end adaption line throughout remaining lines

=.true. to extrapolate last adapted plane throughout remaining planes

ADD (0)
LSTADD (IST)

LENDADD (IEND)
SUB (0)
LSTSUB (IST)
LENDSUB (IEND)

REMOVE (0)

=n to add n points between each node in selected range

lower limit of range for adding points (i.e., when ADD>0)

upper limit (if ADD=0, values are ignored)
=n to delete n points between each node in selected range
lower limit of range for point deletion (i.e., SUB>0)

upper limit (if SUB=O, values are ignored)
removes requested number of points from outer grid region

NOUP (FALSE)

SAVE (TRUE)

=.true. if no adaption required (e.g., for adding points only)

=.false. to suppress output of data files

ORTHS(2) (TRUE)

ORTHE(2) (TRUE)

=.false. to remove orthogonal constraint at start boundaries
=.false. to remove orthogonal constraint at end boundaries

GEOM (FALSE)

QFUN (TRUE)

NOQ (FALSE)
LNSING (0)

PLSING (0)

=.true. to include geometry at wall boundaries in adaption variable

=.false. to remove f(q) from adaption variable
(used with GEOM=.true. only)

=.true. if no q file is available
=n if this line is common to all adaption planes

=n if adaption plane n is collapsed to a line

TWOD (FALSE)
FV (FALSE)

=.true. if datasets are 2-D (see section 2.4.1)

=.true. if q file in finite-volume format

MGRID (0)
EXPORT (FALSE)

IMPORT (FALSE)

MPLANE (1)
IS,IE (0,0)

JS,JE (0,0)
KS,KE (0,0)

adaption grid number if multiple grids
denotes an export plane transfer, not an adaption pass, multi-grid only
denotes an import plane transfer, multi-grid only

defines plane number, used for multiple grid export and import only
defines/direction domain for plane transfers

defines j direction domain for plane transfers
defines k direction domain for plane transfers

First adaption Although many parameters have just been described, generally only a
few are used for each adaption. The best technique, even for experienced users, is to retain as

many of the default parameters as possible, view the results and then adjust some parameters
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if necessary. For some 3-D problems, it is clear which plane should be the stepping plane so the
PLANE parameter, along with the STEP parameter, can be initially chosen. Note that only one

PLANE parameter and one STEP parameter are needed for one adaption pass. Also, a flow-
field variable should be chosen for INDQ that shows the flow features most clearly. To find

appropriate within-plane parameters, adapt on only one plane and/or turn off the
connectivity between planes (i.e., CLAM(2)=0) to see the set of 2-D adaption planes. If there are

any lines common to all planes or if a plane is collapsed to a line, PLSING and/or LNSING
must be set. If the first adaption pass is not acceptable, try increasing the ratio between

RDSMAX and RDSMIN, decreasing CLAM(l), and/or setting NEDGE=I. Since many of the
parameters have interdependent effects, it is better to change only one or two of the

parameters at a time.

2.3.2 Explanation of user-supplied input parameters

The following is a detailed explanation of each of the input parameters; they are listed

in alphabetical order.

ADD When this is set, points are added between adjacent mesh points within the
requested range (see LSTADD, LENDADD). For example, if ADD=2, two points will be added

between each consecutive grid point. Adding occurs only in the adaption direction and not in
either of the stepping directions. Ensure that the added points do not cause the coded array

dimensions to be exceeded. ADD and SUB can be used in the same pass to move points: note
that the ADD will occur before the SUB, so the range on the SUB parameter needs care.

CLAM CLAM(1)=_, and CLAM(2)=_. ° define the magnitude of the torsion parameters

and _F, respectively. As the values of these parameters decrease, more points will be pulled into

the high-gradient regions, at the possible expense of grid smoothness.

CLAM(l) controls z, the torsion parameter within the plane; its order of magnitude can lie

between lO-6 and 1. A value of zero produces a set of independently adapted lines, possibly

generating crossed grid lines. As _ increases, the grid becomes smoother but less adapted.

CLAM(2) controls the magnitude of ¥, the torsion between planes. It has the same range of
values as CLAM(l); however, if it is zero, the adapted grid may still be acceptable. For periodic

planes (i.e., if the first and last planes are the same), setting CLAM(2)=0 is necessary to prevent
a discontinuous grid at the juncture.

CT CT(1)= Ct and CT(2)= CTt; they represent the direction of the torsion vectors Fand F'

(whereas _. and _" are their maglait_de in these directions). They have the range of

0 < Ct , Ct"< 1.O, where a value of zero emphasizes orthogonality and a value of one emphasizes

straightness. The default of .5 places the torsion vectors halfway between. This value is suitable
in most cases, but it may cause problems when side boundaries are concave or when adapting

on already adapted planes.

EXPORT For multiple grids only. When EXPORT is set to .true., the user-supplied
parameters for this adaption pass describe the current location of a plane of data to be
transferred from one location to another, most probably in another grid. This parameter set

must be followed by an IMPORT parameter set that describes the plane's destination.
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FV This is set to .true. if the q file is in finite-volume format (i.e., the q variables are

evaluated at the cell centers and not at the grid points). See section 2.4.2 for a more detailed
description of the finite-volume option.

GEOM This parameter should be used when a wall boundary is defined by high surface

gradients and the standard grid redistribution has moved points in such a way that the
original shape has been deformed. When GEOM is set to .true., the code will add the surface

curvature function to the flow-field gradient function in the wall boundary regions. Points
will thus be maintained in or redistributed into regions of high surface curvature as well as

into regions of high flow-field gradients. The contribution of the geometry function will
proportionally decrease away from both boundaries, with the internal lines controlled by the

flow field only. If GEOM=.true. and QFUN=.false., adaption will be to geometry gradients only,
for all grid lines.

IJPLANE, IKPLANE, JKPLANE These parameters define the plane on which adaption

takes place. By default, they also imply the direction of the stepping plane. The input
parameter file needs only one of these parameters to be set to .true., and the code will

automaticaIly assign .false. to the other two. IjPLANE=.true. indicates that the plane
represented by (i,j) will be the adaption plane and that plane stepping will occur in the k

direction. Whether k is a forward or backward step will depend on KST and KEND (i.e., if KST
> KEND then backward stepping will occur). Similarly, IKPLANE=.true. indicates that the

adaption plane contains the (i,k) directions and that j is the plane-stepping direction. Finally,

JKPLANE=.true. refers to the plane containing the points (j,k) and i is the plane stepping
direction.

IMPORT For multiple grids only. An input parameter list containing IMPORT=.true.

must immediately follow a parameter set containing EXPORT=+true. The IMPORT list
describes the destination (i.e. the receiving plane) of the plane of data defined in the
EXPORT=.true. input-parameter set. The use of MGPLS is important for the subsequent

adaption of the import grid.

INDQ This parameter indicates which of eight possible flow-field variable(s) will drive
the redistribution of grid points. From the standard PLOT3D format, five options are available:

1 --> density, p

2 ---> x-momentum, pu

3 --_ y-momentum, pv

4 _ z-momentum, pw

5 _ stagnation energy, e

Three more options are available by setting INDQ=6, 7 or 8

6 -+ pressure, p

7 _ Mach number, M

8 --_ temperature ratio, T

Pressure, Mach number, and temperature ratio are computed using the ideal gas
relationship and assuming the Q file contains the standard variables. (The code actually

assigns pressure to NDIM+I, Mach number to NDIM+2, and temperature to NDIM÷3, so if the

user has changed the value of NDIM to accommodate extra flow-field variables, INDQ must
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reflect this change.) Note that INDQ=4 is not available for 2-D datasets. The user will normally

choose to adapt to the flow-field variable that most represents the flow features. However, if
different variables demonstrate different features, it may be advantageous to combine them to

bring out all the features on the adapted grid. In this case, set INDQ=0 and input values for IQ.

INTER indicates whether to use a linear (INTER=2), a quadratic Lagrange polynomial

(INTER=3), or a cubic spline (INTER=4) scheme for interpolations. Interpolation is used

throughout the code; for example, the q values in the output function file are interpolated at
the new adapted grid points. Linear interpolation will usually provide the appropriate result.

IQ is an array of eight (NDIM+3) integer va.lues that are used only when INDQ=0. They

allow the user to modify the adaption variable to a combination of variables. The order of IQ is
consistent with the order of the flow-field variables (i.e., IQ(2) represents pu and IQ(7)

represents M). The value of an index is the proportion that the corresponding variable will
contribute to the final adaption variable. For example, IQ(1)=I,IQ(7)=I [i.e., (1,0,0,0,0,0,1,0)] will

produce an adaptive function of 1-(_ _t+--) and IQ(1)=I, IQ(3)=1, IQ(6)=3 will produce
2 0s _s

1 _p 1 _pv 3 bp
+---+---. Obviously, (1,0,0,0,0,0,0,0) is the same as INDQ=I.

5 0s 5 0s 5 0s

IST, IEND contain the indices defining the first and last boundary lines of the adaptive

domain in the i direction. Similarly, JST, JEND define the domain in the j direction and KST,
KEND define the domain in the k direction. These variables define the limits of the adaption

domain and must lie within the input grid boundaries defined for the physical domain,i.e.,

1 < IST,IEND < IMAX; 1< JST,JEND < JMAX; and 1 < KST,KEND < KMAX.

FQrward and backward stepping are also controlled by these parameters. If plane stepping is in

the k direction, setting KST > KEND will produce backward stepping. Similarly, if stepping
within the plane is in the j direction, setting JST > JEND will produce backward stepping. The

reversing of the data is handled internally and is imperceptible to the user. Reversing either of
the stepping directions will completely change the resulting grid, since the redistribution along

the initial line and plane will be different, as will the connecting torsion springs. Reversing
the order of the adaption direction (i.e., i in the default case) should have no effect on the

solution, since the solution along a line is independent of the order of points. However, for

meshes that contain very large and very small zSs_,numerical accuracy may be influenced by

the adaption direction.

ISTEP, JSTEP, KSTEP These are used in conjunction with the PLANE parameters

described above and define the marching and adaption directions within the defined plane.
Only one of these three parameters should be input and set to .true., and the code will assign

.false. to the other two. If IJPLANE=.true., then only ISTEP or JSTEP can be true (KSTEP must
be false). If ISTEP=.true., stepping occurs in the i direction and thus the adaption direction will

be j. Points will be adapted along each constant i line and stepping will occur to the next i line,
forward or backward, depending on IST and FEND. If JKPLANE=.true., only }'STEP or KSTEP

can be true and similarly, for IKPLANE=.true., only ISTEP or KSTEP=.true. will have any
meaning. The code puts out an error message if these inputs are inconsistent.

IS, IE, JS, JE, KS, KE These parameters are used only for an export or import transfer
process in a multiple-grid file. These variables define the range of the transfer domain within

the plane, MPLANE. The PLANE parameter (e.g., IJPLANE) defines which coordinate plane is
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being transferred. As an example, if IKPLANE=.true., then IS, IE, KS, and KE are used to define

the domain within the transfer plane. If they are omitted, it is assumed that the entire plane is
being transferred.

LNSING in some 3-D grid types, planes emanate from a common grid line, generally
on a wall surface. If the chosen set of adaption planes includes this common line, then this

line should be adapted only on the first plane and not on subsequent planes. This adapted line

is then placed in the first line of all planes. Although the input option is LNSING = n, it is
likely that n=l.

LSTADD, LENDADD These are input only if ADD ;_ 0 and if only a portion of the grid

is to be expanded. If they are not input and ADD ¢ 0, the entire adaption domain (not physical

domain) is assumed. If ADD=0, their value is ignored.

LSTSUB, LENDSUB These parameters are input only if SUB ¢ 0; they define the limits

in which points are to be removed. If they are not input, then the entire adaption domain is
assumed.

MARCH This parameter refers to stepping within the plane. If the last line to be

adapted (J,_a)is within the physical grid boundary (i.e., j,,,e<jm_), a sharp discontinuity will

occur between the last adapted line, Je,_, and the nonadapted line, Je,a+m. Setting

MARCH=.true. causes the remaining lines within the plane (i.e., j,,,a+l--_jm.,,x) to be realigned

so that they are proportional to the last adapted line. This realignment will be performed for
every plane. The process is not an adaption but has proved to be a useful tool.

MARCHPL This parameter refers to the plane-stepping direction, and can be used

independently or in conjunction with MARCH. If the last adaption plane is within the

physical boundary (i.e., k_, e < k,.a_), each line in each subsequent plane will be proportioned

with respect to the adapted lines in the k,, a plane.

MG1, MG2 When NEDGE is non zero, an override mesh spacing is computed at the

requested boundaries (either first, last, or both). This edge-point spacing, which is not a
function of the adaption but of the initial grid, is merged into the three adjacent points, to

produce a smooth transition. The default value of MG1 and MG2 is zero when NEDGE = 0, but

four when NEDGE is requested. The user has the option of overriding this value, setting it to
any other integer value. This can be used when adapting a boundary layer; when MG is

increased, the dense edge spacing is maintained over a larger region.

MGPLS This input variable is analogous to MGSTEPS described below, but applies to

planes. If the first adaption plane (ks,) is internal to the physical domain, MGPLS = n permits

the user to gradually bring in the effect of the adaption parameters to produce a smooth

transition across the start plane. No adapti0n will take place on the first plane (ks,), and after n

planes, full adaption occurs with the adaption parameters C,*. _.', etc. equaling their input

value. This is an especially important feature for grids that have an initial distribution on the
wall boundary that defines a physical shape and cannot be changed. It is also useful for

retaining matching multiple-grid boundaries. (see IMPORT)

MGRID This parameter is only used for multiple-grid formatted files and indicates
which grid to adapt. Do not use MGRID=I for a single grid: setting MGRID to non-zero

automatically implies a multiple-grid file.
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MGSTEPS (m_) provides continuity when the first adaption line on each plane is

internal to the physical boundary. Inputting MGSTEPS = n tells the code to start with no

adaption on the initial line (i.e., retain the original distribution on the Jst line) and to linearly

increase the adaption effect until, after n lines, full adaption occurs. At this point, C, K, etc.,

will coincide with their input values. If MGSTEPS = 1, no adaption will be performed on the
first line, but full adaption will occur on the second line. Figure 9 shows an example with

mg= 5, and section 1.4.1 describes the parameter in detail.

MPLANE Used only for multiple grids during an import or export process. MPLANE is

an integer defining the transfer plane. The PLANE parameter is used (e.g., IJPLANE=.t.) to
indicate the coordinate direction of MPLANE.

NEDGE is a flag that requests an override on the computed side-edge boundary spacing.

Side edges occur at isr and iene and frequently need special handling. If there are no flow

gradients near the edge of the domain, the standard adaption algorithm will pull points away
from the edge. This may not be a satisfactory result, as, for example, when the side edge is

internal to the physical grid boundary. Figure 10(a) shows a side-edge adaption with NEDGE=0.
The flow-field gradients are concentrated in the center of the grid, and the first adaption point

(i=4) has been pulled far from the boundary line at is, = 3. It is clear that it is preferable for the

adapted side-edge spacing to be continuous with the juxtaposed spacing in the external region.

Even if the two boundaries coincide (i.e., ist = 1), the user may prefer a different spacing than

that computed by the adaption algorithm. In either case, NEDGE can be set and the code will
try to improve the side-edge spacing. The computed mesh-size override is merged into the

next four points, but this number can be changed by MG1 and MG2. The result of setting
NEDGE=I is shown in Fig. 10(b). Depending on the case, both or only one of the side spacings

may need improving. NEDGE=I requests both edges, NEDGE=2 requests start edge only, and
NEDGE=3 requests end edge only.

NFILT is a "filtering" variable that sets the number of passes used to smooth the

gradient of the input q data and the computed tension parameter, co. The default value of two
will generally suffice, but if the flow-field variables are discontinuous, it may be helpful to
increase the value of NFILT. An increase in NFILT can also be used to expand or spread out a

very sharp flow feature.

NOUP This variable is used to increase or decrease the number of points in the grid (by

using ADD or SUB) without performing an adaption. NOUP stands for NOUPdate.

NOQ If no q file is available, SAGE can still be used to smooth the grid: perhaps to
equal spacing or to the geometry function. If NOQ = .true., no file will be read on unit 8, and

instead a constant flow field will be generated internally. This is quite different from QFUN =

.false. where the q variables are not used, but are interpolated onto the new grid and output on
unit 11.

ORTHS, ORTHE The code assumes that orthogonality to the marching boundaries is
desirable. This may not be the case, as, for example, in outgoing flow where the shape of the

outer boundary is arbitrary. Setting ORTHS(1) = .false. will turn off orthogonality from the first
to second adaption lines, and ORTHE(1) = ,false. performs the same function when

approaching the end adaption line. ORTHS(2) and ORTHE(2) will similarly affect the plane
boundaries.
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PLSING This is aparameteruniqueto 3-Dgrid adaption.It standsfor planesingularity,
and implies that a plane n is actually a single line, but is stored as a set of identical lines. The
code will not be able to compute normals and will certainly "blow up" unless informed of this

condition. It is only relevant when the adaption plane direction coincides with this collapsed
plane. Do not use it when adapting in other plane directions.

QFUN This parameter permits the user to adapt to the geometry function only. When

QFUN = .false. and GEOM = .true. are input, the coefficient of the flow-field gradient (Cq) is set

to zero for all grid lines (see section 1.5). In this case, the geometry function is computed

throughout the grid and drives the adaption for all grid lines.

RDSMAX, RDSMIN control the density of the redistributed points and are the

maximum and minimum allowable grid spacings. They are input as proportioned values and

are changed to physical variables internally, i.e., _M_ x s,_/(n i -I) and _Mm X Sm_ �(hi- 1),

where n i is a constant equal to the total number of points along the adapted line, and s,_ is

the length of the current adaption line. This implies that RDSMAX > 1.0 and RDSMIN < 1.0. (If
both are set to 1.0, a uniform grid will result.) As an example, RDSMIN = 0.5 will prevent a

converged As from being less than half the average step size. (Since many factors influence the
distribution of grid points, this control is not absolute.) Note that since the adaption along the
first line is not influenced by the torsion parameters, this initial line will present a clearer

picture of the effect of RDSMAX and RDSMIN.

REMOVE It is possible that an initial grid has unnecessary grid points in the outer
region. Once an initial solution has been obtained, the user can see that these points are

wasted. REMOVE = n will remove n points from the end of the adaption line, before
performing the adaption. Use NOUP if only removing points is required. To remove points

from the inner region, reverse IST and IEND. This will not change the adaption but will fool
the remove operation. Remember, REMOVE deletes the boundary points, SUB retains the
outmost one.

SAVE This is useful when more than one adaption pass is made in the same program
run, for example, an adaption stepping in the j direction followed by one stepping in the i

direction. The output grid and function files are large, and setting SAVE=.false. on a set of

SNAMEL will suppress the output for that particular adaption. If SAVE=.true. (default), each
subsequent output set of xyz.out and q.out files will be assigned to different unit numbers. As

stated in the execution section, the first output set is assigned to units 10 and 11. The second
output set will therefore be units 12 and 13, and so on. Note: SAVE=.false. cannot be used for

multiple grids.

SUB When SUB = n (_0), points are removed from the adaption line. As an example, if
n=I, every other point is deleted. If n=2, two consecutive points are deleted between the points

retained. Note that the number of stepping lines remains constant: points are only removed
from the adaption line. To remove points from both directions, two passes are required. See

LSTSUB, LENDSUB if only a selected range of deleted points is to be deleted.

TWOD If the input grid and function files are stored as 2-D PLOT3D files, this
parameter must be set to .true. The code will assume that I]PLANE is the adaption plane and

JSTEP the stepping direction. The user must specify ISTEP=.true. if required. The next section
discusses the adaption of 2-D problems.
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2.4 Alternative Grid Types

2.4.1. Two-dimensionalAdaption. The SAGEcode canaccommodate2-D datasets,
and will adapt the singleplane in the samemanneras in the original 2-D SAGE code (Davies

and Venkatapathy 1989). When the input parameter TWOD is set to .true., the code will read
the grid (assuming (x,y)) and function files as 2-D files. These datasets will then be internally

converted to a 3-D format; the number of k planes will be set equal to one, creating a constant z
coordinate, and the 4th q function will be shifted to index 5. (Note that indices INDQ and IQ

retain their 3-D relationship). Because of this reorganization, no special handling of 2-D
datasets is required within the body of the code. Datasets are reconverted to 2-D form before

output. To accommodate larger dimensions, the parameter statement may be changed at the
beginning of each routine. Since 2-D datasets require only KD--1, ID, JD and IMX may be

significantly increased. However, this change is not made automatically and the user must
change the parameter statements if necessary.

2.4.2. Finite-volumeGrids. The solution file associated with finite-volume

applications contains q values evaluated at the cell center. Therefore the IMAX etc. values on

the header record are one less than the values given in the grid file. If SAGE finds that the size

records disagree and that the finite volume option is off, an error message is sent to the user.
Care must be taken with the boundary (or ghost) cells. SAGE interpolates q onto the

internal grid points and then sets all boundary values (in the physical domain) equal to the
adjacent interior value. After adaption, flow values are interpolated back to the cell center. If

all planes are not adapted, the q values in the final adapted plane will be interpolated as if they
are on a 2-D surface since there will be a discontinuity between the adapted and non-adapted

grid points. The boundary values of the physical domain are again set equal to the adjacent
values, regardless of whether the entire physical domain has been adapted. It is therefore very

important for the user to check all the boundary cells in each coordinate direction.

Related to the handling of the boundary cells, SAGE will only adapt a finite-volume
grid if it is a single surface (whether defined in 2-D or 3-D) or is a 3-D grid with four or more
planes.

2.4.3. Multiple Grids. The multiple-grid format is a single file containing a
collection of separated grids. Preceding the grids are two header records, one describing the

number of grids and the other the size of each grid. The associated q file is similarly defined.
Some complex multiple grids utilize the blanking feature available in PLOT3D. At this

time, adaptions by the SAGE code cannot take into account these blanked regions. If
overlapping regions are adapted in separate grids, it is the user's responsibility to interpolate
the results. However, matching zonal planes can be handled with the plane-transfer feature
described below.

2.4.3.1 File handling. Since each grid is stored sequentially within a multiple-grid
file, SAGE reads and copies all grids (and their associated solutions) to the appropriate output
files until the requested grid (MGRID=n) has been read. This grid is now adapted (or a plane

transferred) and written, along with the interpolated flow solution, into the correct sequence
in the output files. Finally, any grids following the adapted grid are also read and copied to the

output files. Subsequent adaption or export/import passes will use these output files as input
files. If several passes occur in the same computer run, several sets of large files could be
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created and the user is reminded to delete unneeded files. The SAVE parameter cannot be
used.

An additional set of files will be created if any grid has changed size (e.g., the ADD or
SUB option has been used). Grid sizes are stored in the header record that has already been

written to the output file before adaption took place. This header record must be amended to
reflect the new grid size. The final output files are therefore read in as input files, the header

record is corrected, and yet another set of output files are created. An output message keeps the
user informed of the unit numbers for the final set of output files.

2.4.3.2. Data transfer using EXPORT and IMPORT. Section 1.7 explains the need

for data transfer between grids. A set of input parameters are available that control the transfer
of data from one domain within a specified plane of a specified grid to a matching domain

within another grid. The same namelist format is used that controls the normal adaption
procedure in SAGE, but two sets are required in the user-input file: the first describes the

'export' plane and the second describes the 'import' plane. Here, the term 'export' means a

domain (i.e. a surface, plane or sub-plane) whose data will be transferred. The domain
receiving this data is the 'import' domain. A transfer domain is defined by

1. the transfer code, either export=.t, or import=.t.

2. the grid number, mgrid
3. the plane direction, (ijplane,ikplane,jkplane)

4. the plane number, mplane (this will often be the first or last plane)
5. the range of points describing the domain (i.e. the start and end points in two

directions) within the plane

Notes: (a) For 2-D datasets only one line in a plane is transferred and ijplane =.t.
and mplane=l are defaulted by the code. The transfer domain is described by is, ie, is, je and

one of these directions must have equal start and end points. If the 'export' card is the first
input set, remember to include twod=.t.

(b) Multiple transfers can be handled in the same run of the code as well as

a combination of adaptions and transfers. See the examples section for clarification.

2.5 Output Message File

The sage.out file is written to unit 6, the normal default for the output screen. It
contains messages that help explain what has happened during program execution. At the end

of each adaption, "ADAPTION n COMPLETE" indicates that the program was able to run to

completion and that xy.out and q.out files have been created. The message "OUTPUT FILES

ON UNITS n, AND n2" informs the user where the final set of files can be found.

The following are other messages that may be seen (given in alphabetical order) along
with a short description of their meaning.

ADD OPTION EXCEEDS DIMENSION (Critical)

Self-explanatory. Increase array dimensions.

FINITE VOLUME METHOD NEEDS 1 OR 4+ PLANES (Critical)

A single plane is treated like a 2D surface: i.e., 4 points are used for cell-centering. Four

planes are needed for the finite volume method in 3D.
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GRID HAS IDENTICAL POINTSAT i AND i+1 ON LINE j AND PLANE k:
CHANGE ADAPTION DOMAIN OR REMOVE SINGULARITIES (Critical)

Computation of body normals is impossible in this region.

GRID SIZE TOO LARGE FOR DIMENSION STATEMENT:

CHANG E PARAMETER STATEMENTS TO ID= nl, JD= n2, KD= n3, IMX= n_:
THESE ARE THE MINIMUM DIMENSIONS FOR THIS ADAPTION PASS ONLY (Critical)

Increase array dimensions to size suggested. Note that these values are appropriate for this

set of input-control parameters only and may need to be changed for other adaptions of the
same grid. For multiple grids, this message may be preceded by additional information.

MPORT CARD EXPECTED, NOT FOUND (Critical)

The previous card in the input stream contained export=.t. This must be followed by a set

containing import=.t.

INCONSISTENT PLANE AND STEP (Critical)

A stepping direction has been requested that is not available for the requested plane. For
example, IKPLANE and JSTEP.

INPUT FILE SIZES DO NOT MATCH (Critical)

The grid dimensions on the header records of the grid file and solution file do not match.

IS THIS FINITE VOLUME? IF SO, SET FV=.TRUE. (Critical)

The grid file dimensions are one greater than the solution file. Should this be finite
volume?

MAX I TOO LARGE, CHANGE ID TO n I

MAX J TOO LARGE, CHANGE JD TO n2

MAX K TOO LARGE, CHANGE KD TO nj

CHANGE IMX TO n4 (All critical)

These messages occur only for multiple grids. It implies that one or more of the grids in

the file is too large for the dimension statement. It need not be the adaption grid. It is
possible that even if this is corrected, a subsequent run could indicate a second dimension

change to accommodate data swapping for the adaption grid.

NDIM TOO SMALL FOR 2D TO 3D TRANSFORMATION (Critical)

Increase NDIM dimension (e.g., from 4 to 5) so internal transformation can be made.

NO CONVERGENCE ALONG INITIAL LINE, ERRMIN= a ! (Warning)

The initial line is a 1-D adaption only. This is rarely a catastrophic error, especially if a_ is
small; however, the adaption may not be completely Satisfactory. The only control

parameters that affect the initial line are RDSMAX, RDSMIN, and NEDGE.

NO CONVERGENCE ON LINE j AND PLANE k, ERR= a 2 (Warning)

This message is only a warning and adaption continues. Even many of these messages

may of be no concern as long as a 2 is small. If adaption is successfully completed, check the

new mesh to see if it is acceptable.

NO POINTS ADDED (Warning)
Inconsistency in parameters requesting adding points.

NO OUTPUT FILES (Warning)

For whatever reason, no files have been ou_ut. (Is save=.f, on all passes?)
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NUMBEROFPOINTSINCREASEDFROM n_ TO n2 (Informational)

If the ADD option has been input, this message gives the new grid dimensions.

NUMBER OF POINTS DECREASED FROM n_ TO n 2 (Informational)

If the SUB option has been input, this message gives the new grid dimensions.

PLANE n I, GRID n 2 COPIED TO PLANE nj, GRID n, (Informational)

The successful transfer of a surface from one grid to another in a multiple grid file.

POINT(S) REMOVED, NUMBER OF POINTS NOW n (Informational)

REMOVE option has been invoked.

S IS NOT MONOTONIC ON LINE j AND PLANE k (Critical)

This message will terminate the program. It indicates that the values of s, at the

completion of the iteration on line j are not monotonically increasing, thus implying
crossover of points. Since this is unacceptable, the program outputs the data. It is then

possible view the plots and reevaluate the control parameters.

SOLUTION FILE IS F-V: CHECK YOUR BOUNDARY CELLS! (Informational)

Data in ghost or boundary cells may be incorrect.

SUB OPTION PRODUCES TOO FEW POINTS FOR ADAPTION (Informational)

Fewer than 10 points remain in the adaption direction.

TOO FEW POINTS FOR ADAPTION WITH NEDGE=I (Critical)

There are less than 10 points along the adaption line. This is not appropriate, especially if

hedge is set.

WARNING: DIRECTIONAL SIGNS INDICATE COORDINATE SYSTEM

MAY NOT BE RIGHT-HANDED (Critical or informational) k_

The calculation of body normals assumes a right-handed coordinate lq'j

system (an example is shown here, where j goes into the paper). In most

cases, this message indicates the grid must be re-ordered, i

2.6 Outline of Each Subroutine

The MAIN routine is a driver routine whose task is to call the relevant subroutines. A

loop (using NADS) is set to provide for multiple adaption passes. The first routine to be called

is INITIAL, which reads and organizes the data. A loop is then set up for the adaption of each
plane, and the constant planar variables are computed. Finally, a loop is set up for each line in
the plane in which all the coefficients of the adaption equation are computed, followed by the

solution process. When each pass is complete, the OUTPUT routine is called.

Along with the MAIN routine, the SAGE code consists of the following subroutines,
listed here (as they are in the source code listing) in alphabetical order. Arguments shown in

boldface are computed within the subroutine.

ADDPTS(IER)

This routine is called by MAIN if ADD _ 0. Extra points (depending on ADD) are inserted

between every grid point within the range LSTADD to LENDADD, by a linear interpolation.
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ADDV(COSX1,COSY1,COSZ1,A1,COSX2,COSY2,COSZ2,A2,COSX,COSY, COSZ)

This is a utility routine. The direction cosines of two unit vectors (COSX1,COSY1,COSZ1) and
(COSX2,COSY2,COSZ2) are input arguments. The routine computes the direction cosines

(COSX,COSY,COSZ) of the unit vector that represents the sum of the input vectors,

proportioned by the coefficients A1 and A2.

BLOCK(J,K)

Initially, all grid coordinates are stored in the input X, Y, and Z arrays. In this routine, a block
of data around the current j line is stored in arrays XJ, YJ, ZJ to prevent the original grid from

being overwritten during interim calculations. Only the converged adaption line is replaced
into the original grid arrays. The XJ, YJ, and ZJ are made up of all i points on the current j line

and all i points on the j-1 and j+l lines in the k-l, k and k+l planes, giving (ni,3,3)

dimensioned arrays. At boundaries, nonexistent data points are filled with 999. Most
calculations within the code, but especially the computation of the normal vectors, are

performed on this block.

CROSSV(XT,YT,ZT,XT1,YT1,ZT1,DST, COSV,AAP, DAP,ICROSS,J)

Appendix II, section 1.9.2 contains the analysis used to develop this routine. COSV is the array

containing the direction cosines of the vector _, defined in that appendix. (XT,YT,ZT) are the

coordinates of a j line, (XT1,YT1,ZT1) are the coordinates of a juxtaposed line, and DST is

along j. As an example, this routine is used to compute s-s' (i.e., AA') and DA', the distance

between s' and the corresponding node at (i,j-l,k), as shown in Fig. 4. ICROSS is the array

containing I and indicates the intersecting segment for each COSV.

CSPLIN(NT,S,V, SPF)

The cubic spline coefficients, SPF, are computed for NT points. S is the streamwise location of
the function V. These coefficients are used by the routine SPEVAL if GEOM=.true. or
INTER=4.

D ETERM( A1,B1,C1,A2,B2,C2,A 3,B3 ,C 3 ,D ET)

This routine computes the determinant of the three vectors whose direction cosines are given

in the argument list.

DLENG(JL,K)

When NEDGE is set, the tension parameter cois amended at the edges (i.e., at IST and IEND) to

improve edge-boundary spacing. This routine computes DLENGS and DLENGE, which are
used in the edge co calculation (by the routine WTEDGE). The values of DLENGS and DLENGE

depend on whether the grid is defined outside of the adaption domain. JL indicates which j
line is needed.

EDGEMG(VAR)

This is a utility routine. For various reasons, the values of some variables at the IST and/or

IEND edges are overridden. To blend these different values into the calculations, this routine
will merge the new values (given at the two boundaries of VAR) into the next three (or MG1,

MG2) grid locations of VAR.
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FBAR(J,K)

This routine is called once for every j line. The As and the gradients 3q/Os are computed at the

input grid points and stored in FQ. If duplicate points are found (i.e., 3 a Asi = 0) a message is

printed and the program terminates. If GEOM=.true., the wall gradients 3g/Os are also

computed by calling WALLS, and stored in FG. In addition, the coefficient Cg is computed and

FG is added to FQ and stored in F. The routine INTF is called to interpolate the value of F at

these new grid points and to compute the normalized form of F, i.e., FB. The routine GETB is
called to find the value of B for this j line. For lines other than the first, initial guesses for the s

distribution are extrapolated from the converged s_ along the j-1 line. Since these do not

correspond to the input points, new local values of x, y, and z are interpolated by calling
PROPS.

FIL TER (V AR, NIPTS,NFIL T)

This routine smoothes the parameter contained in VAR by adding a second derivative term,

v, =.75v_+. 125(vi÷ l -vi__). NFILT is the number of smoothing passes (default=2). The parameters

smoothed are fi = f(Oq/Os) and oai; they are returned to the calling routine via VAR.

FVORG(IND)

If IND=I, this routine interpolates the cell-centered q values onto the grid points to enable

adaption to take place in the normal manner. Values at the first and second boundary points

are set equal. If IND=2, the q values are reinterpolated to the new cell centers.

GETB(J,K)

This routine computes the value of B used to evaluate to. B is found by an iterative process and

is said to converge when the minimum requested As equals the computed minimum AS. The

analysis for this routine is given in appendix I.

GETWT

This routine computes oar, the modifier of to that is set when any computed As lies outside the

requested range.

HEADIO(IC,IER)
This routine reads (IC=I) and writes (IC=2) the header records for multiple-grid files. It also

tests to see if the grid dimensions are too large for the programmed dimensions.

INITIAL(NOMORE,MTCH)
This routine sets all the default values and reads the input parameter file. If EXPORT is true

for a multiple-grid file, MTCH is set to .true. and control is handed to the MATCH routine. In
all other cases, the appropriate grid and function file input routines are called (either READAT
or READMULT). When necessary, the grid points and corresponding flow-field data are

rearranged to correspond to the data organization assumed by the analysis. This routine also
controls the addition or removal of points. If no more adaptions are requested, NOMORE is set
and control is returned to the main routine.

INTF(FI,F2,S1,SMID,NPTS)

This routine interpolates to find F2 (new F) at the new s, ($1), based on the input values of F1

(current F) and the midpoints (SMID) of the input s array. The interpolation routine chosen is
based on the value of INTER.
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INTXYZ Q(J,K,J1,K1,SS,SN, QJ)

This routine interpolates for X, Y, Z, and Q at the new SN, given the corresponding values at
SS. The new (x,y,z) coordinates are stored in the block of data defined by XJ, YJ, and ZJ. The q

data is stored in QJ. The appropriate interpolation routine is called, its choice based on INTER.

LA GC O F (SNEW ,S ARR,NPTS,M,P1,P2,P3 )

This routine computes the Lagrange coefficients P1, P2, and P3 for a point SNEW, with respect
to the input s array, SARR. These are used by the calling routine to interpolate for the variable

at SNEW. First or second order is available; the choice depends on INTER. M is the associated
index for P1 and will reflect a forward or backward interpolation, depending on the location of
SNEW within the interval.

LINE1

This routine solves for the adapted values of si along the initial line d = dst on the initial plane

ks,. Since both torsion terms are zero on this line, the &_, are computed from the 1-D approach.

MARCHJ(K)

If the final adapted line within plane k is internal to the physical end-boundary line, this
routine will redistribute the points on the remaining j lines, based on the distribution along

the .Je,a line. The routine is called for each plane. This action is performed only on request by

the user and is not an adaption to the flow field. However, it will prevent the discontinuity

between the last adapted line and the remaining non-adapted grid lines.

MARCHK

This function of this routine is similar to MARCH] but it is called on user request, if the final

adaption plane ke_e is internal to the physical end plane k,_. It will redistribute points on all

lines on the remaining planes to be proportional to the corresponding line on the last adapted
plane.

MA TCH(NOMORE,IER )

This routine is called as soon as an 'export' card is read. If necessary, the output files are

rewound (REWND); and then the header records are read (HEADIO). The export grid is read
into core (MULTIO) and the requested plane stored (STOREX). Now, the next set of input
parameters are read (which should be an 'import' set). The input files are closed, rewound and

re-read up to the import grid (READMULT). The stored export plane is copied into the import
plane (STORIM) and all the files are written to the output units (WRITMULT).

MGWALLS(J)

This routine is called when GEOM=.true. It computes the coefficient of the geometry function,

Cg (FGW), based on the local aspect ratio.

MUL TIO(INI,IN2,IOUTI,IOUT2)

This routine reads and immediately writes multiple grid files. IN1 and IN2 give the range of
grids to read in (e.g., if MGRID=3, READMULT will initially call MULTIO With IN1=1 and

IN2--3). IOUT1 and IOUT2 give the range of grids to output (in the same example,
READMULT will set IOUTI=I and IOUT2=2, since grid 3 will be written after adaption). The
header records are handled separately in HEADIO.
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NOADAPT(J,K)

This routine updates variables and/or places them in appropriate arrays when no adaption is
to be performed on the current j line, but adaption is to be performed on the next line. In this
scenario, the code expects certain variables to be available at j-1. This occurs, for example, in

merging situations (MGSTEPS > 0) and for common lines (LNSING > 0).

NORM(F1,NPTS)

The function F1 is normalized as (F1-Flmi_)/(FI,_-FI=_n). If maximum and minimum

values are equal or nearly equal, the normalized variable is set to O(10-_).

N O RMPT(IP JP,KP ,INDPL,P A, PB,PC, SIN G )

This routine finds the vector at the point (IP,JP,KP) normal to the plane defined by INDPL.

Although three direction planes exist through the point, only two are needed by the calling
routines: INDPL=I is the (i,k) plane and INDPL=2 is the (i,j) plane. The analysis to describe this

routine is given in Appendix III of this report. Four normals are computed and the average is
found, with the direction cosines returned in (PA,PB,PC). SING is set to 1 if the normal does

not exist.

OUTPUT(NADS)

OUTPUT is called at the conclusion of each adaption set. Proportioning of any remaining

planes is performed if requested by MARCHK and then the data files are returned to their
original order, to conform with the input mesh structure. Either WRITMULT or WRITOUT is
called to output the grid and flow-field files. NADS indicates which adaption number has been

completed (maximum of 10 sets). This routine is also called if s becomes nonmonotonic
(OK=.false.). In this case, the new mesh points that have been computed are output to help the

user choose more appropriate control parameters.

PROPS(J,K)

After a new solution of si has been obtained on a line j, the code stores this data in line j-1 and

steps to the next line. This routine proportions the new si throughout the non-adapted

regions of the block of data defined by XJ,YJ,ZJ. Essentially, this provides a first guess for the

current j line and also produces smoother planes for the vector normal calculations. (See

Appendix III)

PURPLE(A1,A2,A3,B1,B2,B3,V1,V2,V3,NFL)

A and B are direction cosines of two vectors defining an enclosed plane. This routine takes

their cross-product and normalizes the result to give the direction cosines (V1,V2,V3) of the
unit normal to the enclosed plane. NFL is the direction sign of the normal.

READAT

This routine reads in the single grid and function files in PLOT3D binary format. Input

datasets may be in 2-D or 3-D form. The size of IMAX, JMAX and KMAX on the header record
is checked (SIZING) before the data is read. If NOQ is true, the Q array is filled with 1.0.

READMULT(IER)

This is the read routine for multiple-grid files. Since some writing of files also occurs, the

output unit numbers are verified. The header records are read and copied to the output files
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(HEADIO). Then MULTIO is called to read the requested grid into core and to write all
preceding grid data onto the output files. Finally, if NOQ is true, the Q array is filled with 1.0.

REWND

This routine rewinds the output files and opens them as input files.

SETUPJ(J,K)

SETUPJ computes the direction cosines of the vectors _, b, and _ used to evaluate the torsion

vector F. These vectors are associated with the (i,j) points within the constant k plane.

SETUPK(J,K)

This routine is similar to SETUPJ, but the direction cosines of _i", b', and _" are computed to

evaluate the plane torsion vector, F'. These vectors are associated with the (i,k) points within
the constant j plane.

SINGPLN

When PLSING is set, SINGPLN stores the result of the first adapted line into every line of the
same plane.

SIZING(IER)

The parameter statement at the beginning of each subroutine presets the dimensions

(ID,JD,KD) of the grid and q files. This routine compares the input grid dimensions

(IMAX,JMAX,KMAX) or {IM(NGRID),JM(NGRID,KM(NGRID)} to these preset values. If
insufficient space has been allocated, the minimum possible values of ID, JD, and KD are

computed for this adaption to proceed. (These values are not obvious since space must be
allocated for data swapping.) IMX, the maximum of ID, JD and KD is also evaluated. A message

is then sent to the user to recompile SAGE with the suggested dimensions. Finally, IER is set to
1 to inform the INITIAL routine to terminate the code.

SOLUT(J,K)

By the time SOLUT is called, all variables have been computed that are needed to obtain the

new distribution of si. The coefficients of si (see Eq. 8 in the first section of this report) are set

up in a tri-diagonal matrix and solved for s_. Interpolated values of coi are found at these new

values of si and iterations are performed until _]s_ _-s_-' I is small or too many iterations

have been performed. In both cases, a check is made to see if all the si are monotonic. If so, the

program continues; if not, the flag OK is set to false, causing the program to output the current
grid and terminate.

SPE VAL (NT,S,V,SPF,SI,VI,VPI,VPPI)

This is a cubic spline interpolation routine used when INTER=4 or if GEOM is true. It uses the

coefficients (SPF) computed in CSPLIN. In addition to interpolating for the variable V at SI, the
corresponding first (VPI) and second (VPPI) derivatives are also evaluated.

STOREX

This routine stores the data from the export plane into XP,YP, ZP and QP.

STORIM

The export data in XP,YP ZP and QP are copied to the import plane.
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SUBPTS

When SUB = n 40, n points are deleted between each retained mesh point. If LSTSUB and/or

LENDSUB are nonzero, the range of the deletion is restricted. Deletion occurs only in the

adaption direction and does not decrease the number of stepping lines or planes.

SWAPINV

This routine is called if ksr > ke_, J,r > Je_. or i_t > ie,,e. The order of (i,j,k) in the x, y and z input

matrices are reorganized to ensure that internal computations have monotonically increasing

indices. The flag for the handedness of the coordinate system is amended accordingly.

S WAPXYZ(RSWAP)

Since the internal computation assumes that j is the stepping direction within the plane and
that k is the stepping direction of planes, this routine is called to interchange x, y, z, and q

when the input requests alternative stepping directions. RSWAP is a flag that states whether

this data exchange is at the start of the computations or is the reverse process required for
output. This routine is lengthy due to minimizing storage requirements.

SWAP2D(IO)

TWOD=.true. indicates that the input datasets are formatted in two dimensions. This routine

reorganizes the 2-D plane to appear in the code as a 3-D surface. Every z is given the value of
zero, each Q(4) is moved to Q(5), and Q(4) is zeroed. IO indicates whether the translation is

from 2-D to 3-D, which occurs on input, or from 3-D back to 2-D for output.

TORCOF(L,JK,JKST ,JKEND,MGNOS,MARCHJK)

TORCOF is called twice in each loop, once with all the arguments representing the k plane
passing through (i,j,k) and once with the arguments representing the j plane also passing

through (i,j,k). This routine amends the coefficients (Cr.K) etc. of the torsion vectors i and i'

based on the current line location. For example, (7,, is decreased when leaving or approaching a

boundary to emphasize orthogonality.

TORSION(J,K)

This routine first chooses the appropriate /_ and adds to _/ to obtain _. The torsion vector f is

then obtained by adding h and _. f° is computed in a similar manner. The routine CROSSV is

then called to find the intersection of the torsion vectors with the j line from which both s;

and s7 can now be evaluated. Finally, a check is made to ensure that r" and s i monotonically

increase. If they do not, the code attempts a correction, but any major problems will cause the
code to terminate in the SOL UT routine.

UNITV (X1,Y1,Z1,X2,Y 2,Z2,D IR C X, D IR CY, D IR C Z)

This is a utility routine that finds the unit vector from (X1,Y1,Z1) to (X2,Y2,Z2), DIRCX, DIRCY
and DIRCZ are the direction cosines of this vector.

UPDATE(J,K)

This is the last routine called in the iteration loop for the current j. Newly adapted values of s,

have been found. The values of x, y, z and q at this new distribution are interpolated
(INTXYZQ) and replaced into the matrices containing the physical mesh.
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VME R G E (DIR V ,LST ,LEND )

This routine performs the same function as EDGEMG, but with a vector quantity (DIRV) in

place of a scalar value. LST and LEND indicate which value of DIRV must be merged into the
next three (or MG1, MG2) points.

WALLS(JW ,K)

Along line j (JW), the geometry gradient, as defined by the radius of curvature, is computed for

each grid segment. Normally, j will equal .J_t or .Je,,e. However, for cases when geometry is the

only adaption variable (QFUN=.false.), WALLS is called for every j line.

WRITM ULT

This is the write routine for multiple-grid files. The current adapted grid is now output and
any subsequent grids are read and written by calling MULTIO. If the grid size has changed, the

header record is updated; the output files are closed and opened as input files; the header
record is corrected and all data are copied to the new output files.

WRITOUT

This routine writes the single-grid 2-D or 3-D adapted grid and interpolated function file on
units NITG and NITQ. If the finite-volume option is set, IMAX, JMAX and KMAX are one less
on the q file.

WTEDGE(J,K)

This routine is called by MAIN when NEDGE modification is requested. The edge values of

the tension parameter at the next j line are a function of the average co_ along the just-

completed adapted line. This routine calls DLENG to obtain the appropriate value of edge As

on the next line, computes the average co&_ on this line, and evaluates WDS and WDE to be
used in routines LINE1 and SOLUT.

2.7 Nomenclature

The following is a list of variables used in the SAGE analysis. When applicable, the

corresponding FORTRAN name used in the code is shown in boldface.

A,B

As

G
q

c;

g.

c,.,G
,/; ¢G,G,d )

"d; (ex, ey, ez, )

constants used to compute co, (A,B)

aspect ratio, used to control Cg, FGASP

coefficient off(g) in co calculation, FGW

coefficient off(q) in co calculation, FQW

input proportion coefficient for torsion, CT(1)

input proportion for torsion between planes, CT(2)

normal vector to j line within k plane; direction cosines of /_, COSB

normal vector to j line within j plane, COSBK

modified values of C,, G*, CTM(1), CTM(2)

straightness vector, COSD

average straightness vector within k plane, COSE
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e

/

f min, f max

/
g
i

imax,jmax,
kmax

i,,,j,,,k,,

i_d,Je_,k,_

Y
k

I(

I

mg

mg

ng

n i

rlm

_; (nx, ny, n_,)

n

q
R

S

_; (sx ,s_ ,sz, )

Srnax

S _

$*

Asi

AsMm, AsM_

As_in, Asmax
T

-:; (ix, ty,, t_,)

In

if; (ux,, uy,, uz, )
4"

u

x, y,z

average straightness vector within j plane, from k -2 --_ k - l, COSEK

gradient of q (and g if necessary), F

minimum and maximum f used to normalize f, FMIN,FMAX

normalized function of f, FB

geometry function
subscript indicating the current node in adaption direction, I
total number of points in i, j and k directions of input grid file,

IMAX, JMAX, KMAX

start of adaption domain in i, j and. k directions, IST, JST, KST

indices indicating end of adaption domain, IEND, JEND, KEND

subscript of the current stepping line, l

subscript of the current adaption plane, K
torsion-related constant

local subscript relating to node i, L

number of stepping lines before full adaption, MGSTEPS

the plane equivalent of rag, MGPLS

flag for edge control, NEDGE

number of points in the adaption line, NIPTS

merging coefficient for lines f(mg), CNM(1)

merging coefficient for planes f(rag), CNM(2)

orthogonality vector within plane, COSN

orthogonality vector between planes, also stored in COSN
input flow-field variable (p. pu. pv. pw. e), Q
radius of curvature for geometry function, FGS

streamwise length, SS or SN

vector representing s, SSX, SSY, SSZ

maximum value of s on line j, SMAX

value of streamwise length used for torsion within planes, SP

value of streamwise length used for torsion between planes, SPP

s, - si_I , DS

requested minimum and maximum grid spacings, DSMIN,DSMAX

computed minimum and maximum grid spacings
torsion force

within-plane torsion vector, COST

torsion vector between planes, also COST

proportion of/_ and ff used to compute _, TN(1)

proportion of/_* and _" used to compute _', TN(2)

vector normal to j-1 line in k plane, COSU

vector normal to j line on k-1 plane, COSUK

input grid mesh, (X,Y,Z) globally and (XJ,YI,ZJ) locally

40



K input magnitude of torsion control parameter, CLAM(l)

X" input magnitude of plane torsion control parameter, CLAM(2)

0 angle for torsion computation

within-plane torsion-related parameter, TAU

co tension spring force, WEIGHT

co, computed weighting on _, WT

between-plane torsion-related parameter, TAUPL

2.8 List of Major Variables

This section contains the list of variables (in alphabetical order) used in the SAGE code. Local

variables that contain only intermediary values are not listed. The format is:

Variable name(dimension) /r I/r 2/brief description

where r I describes what type of variable---input, local, parameter, or common block name
and r2 lists routine(s) where the variable is initialized.

A

AA(IMX)

AAP(IMX)

ACT

ADD

ALPHA

AMACH(IMX)

/COM2/INITIAL/A used to compute co

/Iocal/SOLUT/coefficient of sill in solution matrix
p *

/argument/CROSSV/ s - r, or s- si

/local/TORSION/final modified C t

/COM19/input/if set, add grid points

/COM12/input/information only for PLOT3D
/local/FBAR/computed Mach number

B

BB(IMX)

BCONV

BJ1
BK1

/COM2/GETB/B used to compute co

/Iocal/SOLUT/coefficient of s_ in solution matrix

/local/GETB/convergence criteria for B iteration

/local/GETB/value of B along j-I line in the k plane
/COM15/GETB/value of B along j line in the k-1 plane

CC(rMX)

CLAM(2)
CLAMW(2)

CNM(2)
CONV

COSB(IMX,3)

COSBK(IMX,3)

COSD(IMX,3)

COSE(IMX,3)

COSEK(IMX,3)

COST(IMX,3)

/Iocal/SOLUT/coefficient of s_+I in solution matrix

/COM10/input/X and _', magnitude of torsion terms
/COM10/TORCOF/modified CLAM

/COM10/TORCOF/_. modifiers for MGSTEPS _ 0 and MGPLS _ 0

/COM15/INITIAL/general convergence criteria

/COM7/TORSION/direction cosines of b, in (i,j) plane

/COM20/TORSION/direction cosines of b', in (i,k) plane

/Iocal/SETUPJ,SETUPK/temporary straightness vector, J

/COM7/SETUPJ/straightness vector, _, in (i,j) plane

/COM20/SETUPK/straightness vector, _', in (i,k) plane

/local/TORSION/torsion vector, t" or t'"
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COSU(IMX,3)

COSUK(IMX,3)

CT(2)

CTM(2)

DAP(IMX)

DAPFL(IMX)
DET

DLENGE

DLENGS

DMINSDB

DS(IMX)
DSMAX

DSMIN

EXPORT

F(IMX)

FB(IMX)
FF(IMX)

FG(IMX)
FGASP

FGS(IMX)
FGW

FQ(IMX)
FQW
FSMACH

FV

GEOM

ICROSS
ID

IEND
IINVERSE

1JPLANE
IKPLANE

rM(lO)
rMAX

IMAXQ
IMPORT

IMQ(10)
IMX

/COM7/SETUPJ/_, normal to j-1 line, in (i,j) plane

/COM20/SETUPK/_', normal to j line in k-1 plane

/COM10/input/ G and C;, directions for torsion vectors

/COM10/TORCOF/modified Gand Ca"

/COM9/CROSSV/ DA' for s' calculation

/COM9/CROSSV/ DA' for s' calculation

/argument/DETERM/value of three-order determinant

/COM6/DLENG/ As computed for end-edge modification

/COM6/DLENG/As computed for start-edge modification

/local/GETB/Omin(As)/OB

/ COM3 /FBAR,LINE1,SOLUT / As

/COM6/FBAR/ ASm,,_ from RDSMAX

/COM6/FBAR/ AS.,i_ from RDSMAX

/COM21/input/if true, store data for transferring between multi-grids

/COM2/FBAR/flow gradient, f = Oq/3s, at input s

/COM2/INTF/], normalized f at current s
/local/SOLUT/coefficient of RHS of solution matrix

/COM17/FBAR/normalized 3g/Os

/Iocal/MGWALLS/function of aspect ratio

/COM17/WALLS/ Og/Os at SMSS
/COM17/MGWALLS/coefficient of FG for co calculation

/COM17/FBAR/normalized Oq/Os
/COM17/MGWALLS/coefficient of FQ for ca calculation

/COM12/input/information only, for PLOT3D
/COM15/input/flag to indicate finite-volume q file

/COMll/input/request for geometry function

/argument/CROSSV/index for interval location of s' or s*
/dimension/parameter statement/currently set at 75

/COM4/input/last node along i in adaption domain

/COM13/INITIAL/adaption requested in backward i steps
/COM14/input/true if (i,j) is adaption plane

/COM14/input/true if (i,k) is adaption plane
/COM21/input/ imax for each grid in multi-grid file

/COM4/input/number of points in physical domain, i direction
/COM24/input/IMAX for q file

/COM21/input/if true, describes location to place EXPORT data

/COM24/input/ imax for each grid in the multi-grid q file
/dimension/parameter statement/currently set at 75
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INDQ
INTER

IQ(NDIM+3)
IS,IE
IST

ISTEP

JD
JEND
JINVERSE

JKPLANE
JM(IO)
JMAX
JMAXQ

JMQ(10)
JS,JE

JST

JSTEP

KD

KEND
KINVERSE

KM(IO)
KMAX

KMAXQ

KMQ(10)
KS,KE
KST

KSTEP

LENDADD
LENDSUB

LNSING
LSTADD

LSTSUB

MARCH
MARCHPL

MAXITS

MG1

MG2

MGCT(IO)
MGPLS

MGRID

MGSTEPS

/COM5/input/index for q for adaption variable

/COM11/input/order of interpolation, 2, 3 or 4

/COM5/input/related to INDQ, combines q adaption function
/COM23/input/ i range of export�import transfer plane
/COM4/input/first node along i in adaption domain

/COM13/input/true for stepping in i direction within the plane

/dimension/parameter statement/currently set at 75

/COM4/input/last node in j adaption domain
/COM13/IN1TIAL/adaption requested in backward j steps

/COM14/input/true if (j,k) is adaption plane

/COM21/input/JMAX for each grid in multi-grid file
/COM4/input/number of points in physical domain, j direction

/COM24/input/JMAX for q file
/COM24/input/JMAX for each grid in the multi-grid q file

/COM23/input/ j range of export�import transfer plane
/COM4/input/first node in j adaption domain
/COM13/input/true for stepping in j direction within the plane

/dimension/parameter statement/currently set at 75
/COM4/input/last node in k adaption domain

/COM13/INITIAL/adaption requested in backward k steps
/COM21/input/KMAX for each grid in multi-grid file

/COM4/input/number of points in physical domain, k direction
/COM24/input/KMAX for q file

/COM24/input/KMAX for each grid in the multi-grid q file

/COM23/input/ k range of export�import transfer plane
/COM4/input/first node in k adaption domain
/COM13/true for stepping in k direction within the plane

/COM19/input/start of add points range

/COM18/input/start of delete points range
/COM15/input/flag to indicate a common line for each plane

/COM19/input/end of add points range
/COM18/input/end of delete points range

/COM14/input/true to interpolate up to physical boundary
/COM14/input/true to interpolate to final plane

/COM15/INITIAL/maximum number of iterations for convergence

/COM9/INITIAL/number of merging points for NEDGE at is,

/COM9/INITIAL/number of merging points for NEDGE at ie_e

/COM16/INITIAL/cou_nter on number of adaptions per grid
/COM11/input/ number of planes before full adaption of

plane parameters
/COM12/input/multiple grid number for adaption
/COM11/input/number of lines before full adaption within plane
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MPLANE
MSI,MSJ,MSK
MTCH

MXFG

/COM23/input/plane number for export or import plane
/COM21/SIZING/contains overall maximum size of multiple grids

/argument/INITIAL/flag to indicate export and import has occurred

/COM17/MGWALLS/location of maximum Og/Os

NADS
NDIM
NEDGE

NFILT

NFLAG
NGRID

NIPTS

NITGI
NITGO

NITQI

NITQO
NOMORE

NOQ
NOUP

/COM4/MAIN/index on number of adaptions

/dimension/parameter statement/used for input q, currently set to 5

/COM9/input/initiates side-edge boundary override
/COM11/input/number of passes for smoothing data
/COM15/INITIAL/indicates direction sign for normal vectors

/COM21/input/number of grids in multi-grid file
/COM4/INITIAL/total number of i points in computation domain

/COM12/INITIAL, WRITOUT.../unit number for input grid file
/COM12/INITIAL,WRITOUT.../unit number for output grid file

/COM12/INITIAL,WRITOUT.../ unit number for input q file
/COM12/INITIAL,WRITOUT.../unit number for output q file

/argument/INITIAL/no more input datasets remain; end program
/COM11/input/false to indicate no q file will be input

/COM11/input/prevents adaption i.e., no update

OK

ORTHE(2)
ORTHS(2)

/COM14/SOLUT/flag to indicate normal termination

/COM16/input/false removes orthogonality at outer boundaries
/COM16/input/false removes orthogonality at initial boundaries

P1,P2,P3
PLSING

PRES(IMX)

/argument/LAGCOF/coefficients of Lagrange polynomials
/COM15/input/flag to define a singular plane

/local/FBAR/computed pressure

Q(IDJD, KD,NDIM)
QFUN

QP(IMX,IMX,NDIM)

/COM1/input,UPDATE/flow-field variables
/COM11/input/false to allow geometry function only
/COM23/STOREX/q data of stored plane for grid transfer

RDSMAX

RDSMIN

RE
REMOVE

RSWAP

/COM5/input/relative value of As,_

/COM5/input/relative value of Asm,n

/COM12/input/not used, PLOT3D variable
/COM18/input/number of points to remove at outer boundary

/argument/INITIAL,OUTPUT/flag for swapping data

SAVE

SING

SMS(IMX)

SMSS(IMX)

SN(IMX)

SNM(IMX)

SNMK(IMX)

/COM14/input/flag to suppress output
/argument/NORMPT/flag to indicate non-existent normal

/COM3/FBAR/midpoints of As

/COM17/WALLS/s i for geometry calculation

/COM3/FBAR/current s array along j line

/COM3/UPDATE/converged s array along j-I line

/COM3/FBAR/ converged s along j line on k-1 plane
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SP(IMX)
SPF(IMX)
SPPL(IMX)

SS(IMX)
SUB

TAU

TAUPL
TIME

TN(2)
TNM(2)

TRAT(IMX)
TWOD

WDE

WDES
WDS

WDSS

WEIGHT(IMX)

WT(IMX)

WTSUM

X(ID,JD,KD)
XJ(IMX,3,3)

XP(IMX,IMX)

Y(ID,JD, KD)

YJ(IMX,3,3)
YP(IMX,IMX)

Z(ID,JD, KD)
ZJ(IMX,3,3)

ZP(IMX,IMX)

/COM9/TORSION/s', intersection of torsion vector and j line

/argument/CSPLIN/cubic spline coefficients

/COMg/TORSION/ s°, intersection of plane torsion vector and j line

/COM3/FBAR/initial value of s along j line
/COM18/input/request to delete points

/local/SOLUT/z, torsion parameter within plane

/local/SOLUT/v, torsion parameter between planes
/COM12/input/not used, PLOT3D variable

/COM10/INITIAL/proportion of/_ to fi for torsion vectors
/COM10/TORCOF/TN modified for boundaries

/Iocal/FBAR/computed temperature ratio
/COM13/input/indicates 2-D input files

/COM2/WTEDGE/weighting factor used when NEDGE set
/COM6/WTEDGE/retained WDE

/COM2/WTEDGE/as WDE, but at initial boundary
/COM6/WTEDGE/retained WDS

/COM2/LINE1,SOLUT/co, tension parameter

/COM6/GETWT/co t, correction to ra

/local/GETB,LINE1,WTEDGE/ _ 1/ca

/COM1/input/input grid points, i direction
/COM8/BLOCK,INTXYZQ/X data stored in block

/COM22/STOREX/stored X of export transfer data

/COM1/input/input grid points, j direction
/COM8/BLOCK,INTXYZQ/Y data stored in block

/COM22/STOREX/stored Y of export transfer data

/COM1/input/input grid points, k direction
/COM8/BLOCK,INTXYZQ/Z data stored in block

/COM22/STOREX/stored Z of export transfer data
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3. EXAMPLES

This section contains many examples to familiarize the user with the adaptive-grid

process. Each example includes plots of the initial grid and flow-field contours, the input-control-
parameter file used to adapt the grid, the resultant adapted grid and a discussion on the choice of

control parameters. In addition, several cases show the improved flow solution obtained from

the flow solver using the adapted grid as input. The 2-D examples show the effect of within-plane
parameters that are also needed for 3-D problems, so 3-D users should also study these examples.

• 3.1 Two-Dimensional Examples

The first set of examples are for 2-D problems. Although the code adapts the data as if it

were a single plane in a 3-D environment, this is imperceptible to the user. When TWOD=.true.
on the input parameter file, SAGE will expect the data to be in the 2-D format of PLOT3D. The
index of (1) on the CLAM and CT parameters refers to within-plane variables. Index (2) is not

needed for these 2-D cases. If TWOD=.t. on the first pass, it will be assumed for subsequent passes
in the same run.

Case 1. Flow in a Supersonic Inlet

Figure 13(a) shows the I01x79 initial grid (assigned to unit 7) for an inlet flow-field

problem• Since the size of the grid is too large for the parameter statement (defaulted as

75 x 75 x 75) it is first necessary to change the values of ID, JD, KD and IMX (to 101, 101, 1 and 101

respectively) and recompile SAGE. However, SAGE will warn the user if this is not done. In this
problem, flow is from left to right and a shock emanates from the upper-wall corner, reflecting

off the lower wall. In addition, an expansion fan originates from the downstream upper-wall
corner and interacts with the reflected shock. An interim computed solution (input on unit 8),

generated by the flow solver using this initial grid, is shown as density contours in Fig. 13(b).

!-
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::m :_

(a) (b)

Figure 13. Flow in a supersonic inlet. (a) Initial grid; (b) computed density contours.

The SAGE code is now run to create a new grid that is more adapted to this solution, i.e.,

the grid points are redistributed with respect to a chosen flow-field variable (in this case, density)
and output to the file assigned to unit 10. SAGE also interpolates the complete flow-field solution

onto these new grid points and outputs this file to unit 11. The updated files will subsequently be
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input into the flow solver to produce more accurate solutions. Several examples of grid adaption

are given for this inlet problem to demonstrate the effect of varying the control parameters. Each

example uses the grid and solution files shown in Fig. 13 as input.

Example 1: Single pass, stepping in j direction. Until the user is familiar with the basic

parameters, the first attempt should be an input-control file with no parameters; i.e., all default
values are used (with the exception of TWOD=.true.):

$namel twod=.t. $

On completion of the execution, the message to unit 6
contains "ADAPTION 1 COMPLETE". The adapted grid

using the default input parameters is shown in figure
14(a). The grid has been more evenly spaced and there is

a slight clustering of points around the shock on the

lower-wall boundary but the remaining grid lines are
not adequately adapted to the flow features. This implies
that the torsion term (whose magnitude is controlled by

CLAM(l)) is too large and is overriding the local tension

term, preventing the tension forces from pulling the

points to the high-gradient regions. In addition, the
minimum grid spacing is too large. Based on this
information, a new input-control file was chosen:

$namel twod=.t.,rdsmin=.25,clam(1)=.OO1,nedge=1 $
Figure 14. Adapted grids.

(a) All default parameters.

Only three control parameters are input: the minimum
allowable grid spacing, the magnitude of the torsion

(b)

Figure 14 continued. (b) Adaption

from bottom to top: rdsmin=.25,
clam(1)=.O01, nedge=l.

term (an order of magnitude less than the default

value), and a request for edge control (which is

frequently used). The remaining parameters retain
their default values, signifying that the full grid will be

adapted, density is the adaption variable, and stepping
is in the j direction. The result of this adaption is

shown in figure 14(b). It can be seen that, since
adaption began along the lower surface (jst=l is the
default), the redistributed points cluster around the

point of reflection on this line. However, points do not
become sufficiently clustered at the corner shock and at

the start of the expansion wave region on the upper

surface. This is to be expected, since the adaption on the
initial line is a 1-D solution and will pick up features

quite clearly. However, as stepping continues, the
features on subsequent lines get "dampened" by the
torsion (i.e., smoothness) control.

Example 2: Adaption with backward jsteps. This example maintains the same parameters as

example 1, except that the upper surface is chosen as the initial adaption line, i.e.,

Snamel twod=.t.,rdsmin=.25,clam(1)=.OO1,nedge=1,jst=79,jend=l $
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Figure 14(c) shows the result of this adaption. In this case, the upper surface is more clearly

adapted, and the point of reflection on the lower surface is more spread out. Comparing these
two examples indicates quite clearly that the starting line has a strong effect on the resultant

adapted grid, and for some applications it should be chosen carefully.

Example 3: Adaption in i direction. This example shows the very different grid generated when

the adapfion is performed by stepping in the i direction (istep=.true.). Based on the experience
obtained from the first two examples, adapting from right to left will produce a better grid since

there are no gradients on line ist=l to adapt to. Hence, the input control file was chosen to
contain:

$namel twod=.t.,istep=.f.,ist=101,iend=1,rdsmin=.25,clam(1)=.OO1,nedge=1 $

Figure 14(d) shows the result of this adaption. Not surprisingly, the reflected shock region on the

lower surface is not "captured" by this adaption, and thus this grid is less suitable than those
shown above. This demonstrates that the choice of stepping direction is important in producing a

desirable grid.

(c) (d)

i

Figure 14 continued. (c) Marching from top to bottom; (d) marching in i, from right to left.

Example 4: Effect of changing control parameters. This example is actually a collection of

examples that show the effect of varying the control parameters clam(l), ct(1), rdsmax, and
rdsmin. Figure 15(a) shows an adapted grid using "baseline" values. These are the same as the
default values in the code with the exceptions of clam(1)=.O01 and adaption proceeds from top to

bottom (i.e., jst=79, jend=l).

Snamel twod=.true.,clam(1)=.OO1,jst=79,jend=1,nedge=1 $

Figures 15(b) through 15(f) are grids adapted by changing just one of the baseline parameters.
Figure 15(b) shows the result with clam(I)=.01, and it is immediately obvious why this code
default value was not chosen as the baseline value for these comparison cases: clam(l) is too large

to allow any of the flow features to be "captured" by the adaption. Figure 15(c) shows the case for
clam(1)=.O001, and this smaller value produces a grid with more points clustered around the

shocks. Figures 15(d) and 15(e) show the effect of the ct(1) parameter: ct(1)=l.0 in Fig. 15(d),

emphasizing straightness, and ct=.O in Fig. 15(e), emphasizing orthogonality. The latter shows

how the orthogonality term dampens the adaption for this case: we are requesting orthogonality
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(e) (f)

Figure 15. Effect of control parameters. (a) Baseline: clam(1)=.OOl,ct(1)=.5,rdsmax=2.0,rdsmin=.5;

(b) clam(I)=.01; (c) clam(I)=.O001; (d) ct(1)=l.0; (e) ct(1)=.O; (f) rdsmax=4.0,rdsmin=.25.
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to the already parallel i lines. Finally, the effect of changing the minimum and maximum

allowable grid spacing is shown in Fig. 15(f), where rdsmax=4.0 and rdsmin=.25 are used. This
mesh size control is only a factor of 2 different from that in the baseline example (Fig. 15(a)), but

significantly densities the spacing in the shock regions.

Example 5: Two-directional adaption. Two-directional adaption is created by adapting in one
direction (e.g., stepping in j) and then adapting in the other direction (i.e., i), using the first

adapted grid as input. The resultant grid will depend on the order of the stepping direction. Two

passes (i.e., two sets of input control parameters) were made to produce the adapted grid shown
in Fig. 16(a). If both these passes are made during the same execution run (not to be
recommended for a first attempt), then additional output files will be created on units 12 and 13.

Data will be output for both passes, unless the SAVE parameter is set to false on the first set of

control parameters. The control file for this example contains:

$namel twod=.t.,clam(1)=.OOl,rdsmax=4.0,rdsmin=.25,jst=79,jend=1,nedge=l $

$namel istep=.t.,ist=101,iend=l,clam(1)=.O01,rdsmin=.25,nedge=l $

Figure 16. Two-directional adaption. (a) Marching in j followed by marching in i;
(b) marching in i followed by marching in j.

The.first pass steps in the j direction and uses the same input control parameters as the

adapted grid shown in Fig. 15(f). The second pass steps in i, and uses the same parameters as
example 3. Note that any parameters that remain unchanged for the two passes still need to be
redefined in the control file, since the code restores all default parameters at the conclusion of

each pass (with the exception of twod=.true.). The control file used to produce Fig. 16(b) contains
the same parameters, but the adaption order is reversed. That is, the first pass steps in the i
direction and the second pass in the j direction. The difference between Figs. 16(a) and 16(b) is

obvious and shows that the initial grid completely effects the adaption. Although this example

shows that both adaptive sequences do adapt the grid quite reasonably, it should be noted that it is

also possible that one order of adaption will produce a completely unacceptable result, while the

reverse is quite suitable.

Example 6: Flow solution using adapted grid. Figure 17 demonstrates the improved flow-tield
solution obtained when the flow solver is rerun using an adapted grid as input. The adapted grid
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shown in Fig. 17(a) was obtained by choosing the 'best' parameters, based on the experience

already described:

Snamel twod=.true.,jst=79,jend=1,rdsmax=4.0,rdsmin=.25,clam(1)=.OOO1,nedge=l $

This grid and the interpolated flow-field variables were input to the flow solver, producing the
flow solution (shown as density contours) seen in Fig. 17(b). The improvement in the resolution
of the incident and reflected shock is obvious when compared to the initial solution shown in

Fig. 13(b).

Col

.... _ _.__L'_

Figure 17. Solution using adapted grid as input. (a) 'Best" adaption, rdsmax=4.0,rdsmin=.25,

clam(1)=.O00I; (b) solution density contours, using "best' adapted grid.

Case 2. Hypersonic Blunt-Body Flow

The second case contains two examples that demonstrate the effect of the CLAM and CT

parameters. Figures 18(a) and 18(b) show an initial grid (32 x 32) and corresponding density flow-
field contours for a hypersonic blunt body. The j direction marches out from the surface to the
free-stream boundary, and the i direction marches along the body starting at the lowest point.

This is a simple one-directional problem with the shock shape aligned with the grid. The outer-
side boundary is curved (when marching in the i direction) and the default values of clam=.OI

and ct=.5 will prevent the adapted grid lines from "turning" sufficiently at this edge, giving either
a false densing of points at the outer side boundary or, possibly, a critical error message. In this
situation, two remedies are available. CLAM can be decreased, hence de-emphasizing the effect of

torsion and thereby allowing the tension force to "pull" the nodes toward the shock wave.

Alternatively, the orthogonality restraint can be removed by setting ct=l.0. Figure 18(c) shows the
result of setting clam=.O01 and retaining all other parameters at their default value. The adapted

grid obtained by setting ct=l.0 is very similar and is not shown here. The following are the two
input-control files:

$nameI twod=.t.,istep=.t.,clam(1)=.O01$ and $nameI twod=.t.,istep=.t.,ct(1)=l.0 $

Both adapted grids show the required result, i.e., the clustering of grid points across the shock.
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Case 3. Blunt-Body Shock Impingement Problem

The third case introduces the use of the IQ and ORTHE parameters. Figure 19(a) shows the

input grid of a cowl/lip shock interaction problem. The j direction marches from the body surface
to the outer free stream and the i direction marches from the lower point of the sphere. The flow-

field contours of both density (Fig. 19(b)) and Mach number (Fig. 19(c)) are given, since the
adaption flow-field parameter is a combination of the two. The blunt body shocks, impinging

shock, and shear layers represent a complex flow that requires adaption in both directions to
adequately capture all the flow features. Figure 19(d) shows the adapted grid (output on unit 13)

produced by the following two-pass control file:

$nameI twod=.t.,istep=.t.,ist=91,iend= l,indq=O, iq(1)=2,iq(7)= l,rdsmin=.25,
ct=. 7,clam(1)=.OO5,nedge=2 $

SnameI indq=O,iq(I)=2,iq(7)=l,rdsmin=.3,orthe=.f. $

The first pass steps in the i direction, starting from the topmost boundary. The parameter
indq=O indicates that IQ will be input, and in this case two-thirds of the density function and one-
third of the Mach function will be combined to become the adaption variable. As explained in

case 2, the curvature of the outer boundary requires increasing CT. Setting nedge=2 requests that
only the side-edge boundary at j=l be treated. The second pass introduces the use of the ORTHE

variable: stepping occurs from the sphere wall to the outer curved boundary, where the default
would turn the grid to be normal to this outer boundary. ORTHE overrides this and allows the

adaption to occur naturally.

(a) (b) (c) (d)

Figure 19. Blunt-body shock impingement problem. (a) Initial grid; (b) initial density contours;

(c) initial Mach contours; (d) adapted grid.
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Case 4. Hypersonic Inlet (Zonal Adaption)

Figures 20(a) and 20(b) show the initial grid and density contours for a hypersonic cowl/lip
inlet problem. This is a more complex case and requires dividing the adaption domain into two
zones: the blunt body region and the rectangular inlet region. The upper wall is the j=l line and

the outgoing channel region (on the right side of the diagram) is the i=1 line.

(a) (b)

Figure 20. Hypersonic inlet, zonal adaption. (a) Initial grid; (b) initial density contours.

Five adaption passes are required to create the final adapted grid shown in Fig. 20(c). The
input control file consists of

Snamet twod=.t.,rdsmin=l.0,rdsmax=I.O,save=.f. $

$namel jstep=.f.,rdsmin=.2,nedge=I,save=.f. $

Snamel ist=70,save=.f. $

Snamel jst=32,jend=1,iend=71,rdsmin=.25,

clam(1)=.O2,nedge=l,save=.f. $

$ namel iend=85,jst=19,jend=l,clam(1)=.O02,

nedge=l,mgsteps=5 $

The first pass, with equal maximum and

minimum spacing, spreads out the i grid lines

evenly; the original grid points were more densely
distributed in the curved section, leaving fewer

grid lines in the inlet area. This is a good example
of using the program to improve an initial grid,

(c) with no flow-field adaption involved. The second

Figure 20continued. (c) Adapted grid. pass steps in the i direction and adapts easily
throughout the entire grid. The third, fourth, and

fifth passes perform the adaption in the j direction. The very different flow features in the blunt-

body region (blunt-body shock) compared to the features in the inlet region (Mach stem and
reflected shocks) indicate dividing the adaption domain into these two zones: i __70 and i>70.

Only the blunt-body section (i>70) is adapted in pass three, with all default-control parameters.
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The adaption in the inlet domain starts at jst=32 in order to pick up the Mach stem along the
lower wall. After stepping through the triple-point region (the intersection of the cowl shock and

the reflected normal shock), the redistributed points do not spread out sufficiently, so the
adaption is stopped at line 19 and a fifth pass is started at line 19 with a decreased value of CLAM.

Since this pass starts internally, it is necessary to set MGSTEPS in order to merge smoothly from
the already adapted region. Note: save=.f, has been used on the first four passes to prevent
excessive file generation.

Case 5. Subsonic Impinging Jet

This example is to show the use of the SUB parameter. The original grid, with 231 x 100

grid points, and the corresponding Mach contours are shown in Figs. 21(a) and (b). It was

demonstrated that adapting the grid enabled the user to decrease the density of grid points, and
thus speed up the flow solver. Adapting the grid and reducing the number of points can be

accomplished in the same execution run. The first step is to ensure that the dimension
parameters are increased to ID=231, JD=231, KD=I, and IMX=231. (Note that SAGE will inform the

user of the correct dimensions, if necessary.) To remove every other point from both coordinate
directions, the input-control file requires two passes for the adaption:

$nameI twod=.t.,sub= l,rdsmax=4.0,rdsmin=.l,clam(1)=.OOS,jst= l OO,jend= l,nedge= l ,indq= 7 $
$namel sub=l,istep=.t.,noup=.t. $

Both passes use the SUB parameter, reducing the number of points to a 116x51 grid as
shown in Fig. 20(c). The example shows that the SUB (as with the ADD parameter) can be used in

conjunction with an adaption (as in the first pass) or simply as a method to reduce the number of

points in the original grid (as in the second pass). It should be noted that if the two passes had
been in reverse order, the input value of jst would need to be modified by the user to jst=51. To
reduce points in a subset of the adaption domain, LSTSUB and LENDSUB should be used,

however in this example the default values of the entire adaption domain are appropriate.

(a)

4_- Ji

_.4 !;

Figure 21. Subsonic impingement jet. (a) Initial grid.
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Figure 21 continued. (b) Initial mach contours; (c) adapted grid, with reduced points.

Case 6. Axisymmetric Plume Flow

This final 2-D case is presented to indicate the powerful effect of the adaptive grid process

on the final flow-field solution. Figure 22(a) shows the initial grid and the reflected computed
solution (in Mach contours) of an axlsymmetric nozzle-plume flow. This initial solution has not

developed sufficiently to capture the final flow features: the outer shear Iayer, barrel shock, Mach
stem, reflected shock, and the triple-point shear layer. Three iterations (through both adaption

and flow solver) were made to produce the final adapted grid and solution shown in Fig. 22(b).

The definition of the flow features is greatly improved. Figure 22(c) shows the accuracy of the
final solution: the lower picture is a shadowgraph of the actual experiment and is almost

mirrored by the computed solution.
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(c)

Figure 22. Axisymmetric plume flow.

(a) Initial grid and flow solution (as Mach contours) showing underdeveloped flow features;
(b) final adapted grid and flow solution after several iterations;

(c) comparison of computed solution with experimental shadowgraph.
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3.2 Three-Dimensional Examples

The adaption of 3-D grids is more complicated, not only because of the additional torsion

control, but because of the increased choice of stepping and marching directions. For 2-D
adaption, four choices of adaption are available: stepping in the i direction, the j direction; or both

(in either order). Each of these options will produce a different adapted grid. For 3-D adaption, it
is also necessary to choose a plane-stepping direction and, in theory, to consider up to three

possible directional passes. In practice, it has been shown that a one-directional pass will
frequently provide a sufficiently adapted grid, and that a two-directional pass is the maximum

required. The following case shows the effect of single- and multi-directional passes.

Case 7: Tandem Fuel Injectors in a Supersonic Combustor (Rockwell Model).

Figure 23 represents a two-slot, tandem fuel injector arranged behind a backward facing

Computational domain i

.:-- _...._ '. _.-'._

•XN , _ _ facing
J __ . step

Transverse Injectors

Supersonic flow

Figure 23. Staged transverse injectors in a supersonic
combustor, showing computational domain.

Example 1. One adaption pass Showing 3-D effect.

step in a supersonic stream that models

the Rockwell supersonic combustor. The
fuel injection through the slot nozzle
creates a complicated three-dimensional

flow pattern. Since the outflow is
supersonic, fuel injection normal to the

main flow produces strong shock waves

and streamwise separation in the
vicinity of the slots. In addition, the

backward facing step locally creates a
subsonic flow ahead of the slots. In this

example, grid adaption is limited to the
region downstream of the backward

facing step. The grid and initial solutions
for the fuel injection problem were

provided by J. Wang.

This example is used to demonstrate how a
one-directional adaption (i.e., one pass of the program) changes the grid-point distribution, not

only on the chosen adaption plane, but also on the two cross planes. The initial grid (80 x31 x61)
given in Fig. 24(a), shows three selected planes from Wang's initial grid, one in each of the

coordinate directions, where i=40, j=l and k=30. For clarity, these planes are separated (but with
their original orientations) and shown in Fig. 24(b). Figure 24(c) presents the Mach contours

obtained from the solution on the initial grid by the flow-field code, corresponding to each plane.

The adaption is performed by redistributing the points on the first j plane and then marching in j
planes (obtained by setting ikplane=.t.). Within each j plane, stepping is in the i direction (since
istep=.t.) and the adaption is therefore performed along the k lines. The input parameter file used

to create the adapted grids shown in Fig. 24(d) is:

Snamel ikp_ane=.t._istep=.t._rdsmax=4.__rdsmin=.2_ndq=7_c_am(_)=.___2_c_am(2)=.___5_nedge=1 $

As requested, the j plane has clearly adapted to the Mach number gradients in the k
direction, but so has the i plane, since this was the stepping direction within planes. However,

the curvature of the planes themselves has not changed. The k plane shows a different effect:
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points have not moved within the plane,but only up and down (again, the k direction), thus
changing the curvature of the plane. This example clearly shows that although the adaption is in

only one direction, all planes are affected. It is thus quite possible for one pass to adequately adapt
the grid for re-input to the flow-field code.

.= = plane

plane

\
(a) "_ i=4° \plane\_ (b)___w k_--30plane

(c) (d)

Figure 24. Three planes from initial grid. (a) Actual location, i=40,j=l,k=30;

(b) same planes, separated for clarity; (c) initial Mach contours; (d) single direction adaption.

Example 2. Two-directional pass. This combustor problem is one that benefits from a two-
directional pass. By looking at the constant j plane in Fig. 24(d), it can be seen that a second

adaption to redistribute the i direction would be appropriate: this can be effected by adapting the j
planes, stepping in k lines. The second set of adaption parameters are

SnameI ikp_ane=.t._kstep=.t._rdsmax=4.__rdsmin=.2_indq=7_c_am(1)=.___2_c_am(2)=.___5_nedge=_ $

59



Figure 25(a) shows the result of performing this adaption "on top" of the adaption already shown
in Fig. 24(d); points have now been redistributed in the i direction as well as the k direction.

However, it should be noted that the i direction can also be adapted by marching in j within
constant k planes by using:

$namel ijp_ane=.t._jstep=.t._rdsmax=4.__rdsmin=.2_indq=7_c_am(1)=.___2_c_am(2)=.___5_nedge=1 $

This adapted grid is shown in Fig. 24(b) and shows a very similar redistribution on the j plane,
even though this is not the adaption plane.

j=lplane r plane

>

I k=30 plane

(a) (b)

Figure 25. Two-directional adaption, using grid shown in Fig. 23(d) as input.
(a) Adapting ik planes, stepping in k lines; (b) adapting ij planes, stepping in j.

Example 3. Torsion parameter between planes, t °. Users familiar with 2-D examples know how

the torsion parameter (k) affects the adaption within a plane: this parameter controls the

magnitude of the torsion term and the larger the value of _,, the smoother the resulting grid, but
with less grid redistribution. This effect is demonstrated in case 1 in the 2°D section.

Unfortunately, the "base" value of k varies for each problem: the default value in the code is .01

but the user may have to change this value by as much as one, two or even more orders of

magnitude, k" is the analogous torsion parameter between planes, and acts in a similar manner

to X, but restricts the movement of points from plane to plane to maintain smoothness in the

cross-planes. If k° = 0, there is no torsion control between planes, and planes will be adapted as

independent entities. (In fact, setting _,' = 0 is one way of handling periodic planes.) In the code,

l" is defaulted to .0001 and this example illustrates the effect of this parameter.

The same combustor-flow problem from example 1 is used with different input control

parameters. This time, we are adapting k planes and comparing the effect of t" on the crossing j

planes. Figure 26(a) shows the initial distribution of two k planes (the upper and lower surfaces)
joined by the first j plane. For this particular application, the first k plane would normally not be

adapted, since the maintenance of its initial spacing is a high priority. However, to illustrate the

60



adaption procedure, in this example the first plane is adapted. The input parameter file giving

the result shown in Fig. 26(b) increases the value of X" to .001:

SnameI ijplane=.t.,jstep=.t.,clam(1)=.OOl,clam(2)=.OOI,rdsmax=4.0,rdsmin=.2,nedge=l $

This input requests marching in k planes (since ijplane=.t.) and stepping in the j direction within

the k plane. The only parameter with any control of the j plane is X° (clam(2)) and the j plane

shows some redistribution of points, but insufficient to reflect the flow features. Compare this
plane to that in Fig. 26(c), where the adaption was performed with the identical input parameters

except for a decrease in X" to .0001, i.e.

Snamel ijplane=.t.,jstep=.t.,clam(1)=.OOl,clam(2)=.OOOl,rdsmax=4.0,rdsmin=.2,nedge= l $

The effect on the smoothing between planes is very evident and indicates the influence of the
torsion parameter between planes.

j=l

(a) _ k=l plane Co) (c)

Figure 26. Effect of varying K'. (a) Initial grid showing j=l plane; (b) adaption with clam(2)=.O01;

(c) adaption with clam(2)=.O001.

Case 8: NASP 3-D Nozzle simulation

Example 1. Two-directional adaption. Figure 27 shows the geometry of a wind-tunnel
experimental model for the National AeroSpace Plane (NASP) called the Single Expansion Ramp
Nozzle (SERN). The model is inserted into a

hypersonic test section with cold air injected at Corn
supersonic speed through the nozzle, vputati°nalgrid
Superimposed on the ramp section is an

outline of the computational grid which is

detailed in Fig. 28(a). This 3-D flow-field grid
(41x60x90) defines the nozzle and after-body
region of the model that is used in the
computational experiments. Shown in the

figure is the downstream outflow plane at
i=41, the lower grid at k=31 (part of which is

the upper surface of the after-body ramp) and

the symmetry plane at j=l. Additional patched
Figure 27. SERN experimental model and the

computational space in the plume region.
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Outflow plane_ Symmetry

\Plane with
ramp surface

(a) (

(c) (d

Figure 28. NASP nozzle plume flow. (a) initial gri& (b) initial Mach contours;
(c) adapted grid; (d) final solution using adapted grid.

grids are not shown, but there is a grid boundary that must be matched from j=41 to j=60 along

the k=31 plane with the grid that is stored in k=l to k=30, and also a matching i=I plane.

Adaptions were performed from plane i=2 to plane i=4I, stepping in both j and k directions
within the plane, using the initial solution shown as Mach contours in Fig. 28(b). This complex

case utilizes many of the available input options and the two-pass adaption parameters used to
produce the adapted grid in Fig. 28(c) were:

$ n a m e I jkplane=, t.,kstep=, t.,rdsmax=2.5,rdsmin=.25,kst=32,kend=83,indq=7, nedge=l,
clam(1)=.l,clam(2)=.Ol,mgsteps=4,mgpls=4,march=.t.,ct(1)=.75,save=.f. $

Snamel jkplarie=.L,jstep=.t.,rdsmax=I.25,rdsmin=.25,kst=35,indq=7,nedge=2,mg1=8,

cIam(1)=.l,clam(2)=.Ol,mgpls=4,ct(1)=.75 $
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The first set of parameters requests the adaption of each i plane (dkplane=.t.), stepping in

the k direction (kstep=.t.) within the plane. Mach number (indq=7) is the adaption parameter.
Adaption begins on line k=31 with the merging technique invoked (mgsteps=4) within the plane.
This will retain the k=31 line to match the existing lower boundary and ensure that the adaption

parameters are filtered for the next four adaption lines. Both torsion parameters and the

directional parameter, ct(1) are larger than their default values since a previous test run showed
that too much adaption (and thus loss of smoothness) occurred using the default values.

Another parameter used in this example is MARCH. This is invoked from line kend=83: after

this line, the flow has no gradient features and is mostly numerical "noise", and MARCH simply
presents a more attractive grid. Since the adaption algorithm normalizes the weighting function,

"noise" can produce unnecessary redistribution. Due to adjacent grids, it is not appropriate to
adapt the i=l plane, thus a smooth transition is required between the first plane and subsequent

planes. This is controlled by mgpls=4: the default start plane of ist=I was not adapted and the next
three planes were more gradually adapted than they would have been if MGPLS was not

requested. Example 2 of this case gives a detailed account of this plane-merging process. The
SAVE parameter was set to .false. to prevent the output datasets from being written. This should

be done only when more than one adaption pass is made in the same computer run.
The second adaption set requests adaption of the same i planes, but stepping in the j

direction within planes. The first adaption point is k=35. This was chosen to retain the first few
points in the boundary layer. In addition, the parameters nedge=2 and mgl=8 are used to filter

this boundary layer spacing into the next eight grid points on the line. The value of nedge was
changed from 1 to 2 for this pass because there was no need to maintain any spacing at the outer

edge, where no gradients are found: these points are better used within the body of the grid.
However, the adaption still left an unnecessary number of points in this outer region, so a final

pass was made:

$nameI jkplane=.t.,jstep=.t.,noup=.t.,sub=1,lstsub=82,add= l,lstadd=51,1endadd=55 $

Here, no adaption is performed (noup=.t.) and four lines are moved by using the SUB and ADD

parameters. The final adapted grid is given in Fig. 28(c). This was input to the flow solver,
producing the final solution shown in Fig. 28(d).

Example 2. Merging from non-adapted planes to adapted planes. The nature of three-
dimensional problems frequently necessitates the maintenance of boundaries: either for multiple

grids or to preserve solid geometry walls and even for maintaining boundary layers. For the
NASP nozzle case described here, the plane at i=l must match another plane on the adjacent (not

shown) grid. There is also a dense grid spacing around the nozzle exit for defining the boundary
layer region that should also be retained. The simplest way to handle these two situations is to

not adapt the first plane, but to adapt the contiguous planes in a merging manner. This merging
is needed to create a smooth transition in the cross plane, not in the adaption plane itself (which

is handled by MGSTEPS).
Figure 29(a) shows the initial i=1 (and thus the identical i=2 plane) for the 3-D grid shown

in Fig. 28, and Fig. 29(lo) contains the corresponding pressure gradients for the i=2 plane. If the
input adaption parameter ist=2 is used, with no merging process invoked (i.e., the first plane is

ignored) the resultant adapted i=2 plane is shown in Fig. 29(c). Although this grid is smooth and
nicely adapted to the flow, the cross plane, j, is not (compare Fig. 29(c) with Fig. 29(a)). In addition,

points have been drastically pulled away from the nozzle region. By invoking the MGPLS option,
this cross plane unevenness can be dampened. The technique is analogous to that used by
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MGSTEPS: both K" and C; are modified to increase the restraint of movement of points between

planes. These values will return to their original input values within a certain number of planes,

as requested by MGPLS. The following is the input parameter file used to create the adapted grid

(i=2 plane) shown in Fig. 29(d):

Snamel jkplane=.t.,jstep=.t.,rdsmax=l.25,rdsmin=.25,kst=35,indq=6,nedge=2,mgl=8,

clam(l)=. 1,clam(2)=.Ol,ct(1)=.75,mgpls=4 $

The difference between Figs. 29(c) and (d) is striking: the boundary layer spacing is now

maintained and the adaption process is just beginning. Although mgpls=4 in this example,

setting mgpls=l will also have considerable effect. By setting MGPLS at all, a request is made to

not adapt the first requested plane (in this case, ist=l, by default) but to use the grid on that plane
as a control for the subsequent planes. Thus, mgpls=l, ist=l is not the same as setting ist=2.

(a)
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Figure 29. Merging planes using mgpls. (a) Initial grid at i=1 (and i=2); (b) initial pressure
contours; (c) adapted grid at i=2 with ist=2; (d) adapted grid at i=2 with ist=l and mgpls=4.
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Case 9. Aeroassist Flight Experiment (AFE) vehicle

This example is the hypersonic, non-equilibrium flow around the forebody of the
aeroassisted flight experiment (AFE) vehicle. In Fig. 30(a) the initial grid configuration (35x23x49)

is shown around the body in the form of j planes 2 and 22, and the outflow plane at i=35. The

Mach contours seen in Fig. 30(b) were computed by the flow-field solver of Palmer (1990) using
the non-adapted grid. This grid was then adapted with respect to these Mach contours, and the

resulting grid is seen in Fig. 30(c). The redistribution of points within the blunt-body shock region
is clearly shown. Due to the smooth shape of the shock, adaption was performed only in one

direction: marching in j planes and stepping in the i direction within planes. The input data set

used to create the adapted grid in Fig. 30(c) was

$namel Insing=l,ikplane=.t.,istep=.t.,indq=7,jst=2,jend=22,rdsmax=4.0,rdsmin=.1,

kst=15,orthe=.f.,nedge=l,clam(1)=.O01 $

This is the first example to use the LNSING parameter. It is set since all j planes emanate
from a single line at i=l. (This forebody singular line is used in grid mapping.) However, the

dataset still contains the grid points for line i=l as if it were a separate line in each plane. Insing=l
ensures that the first line in the first plane is adapted, and that all i=l lines on subsequent planes

are set identical to this adapted line. The parameter orthe was set to .false., which removes the

orthogonality constraint at the outflow line of i=35. The default value of .true. would have
created a false turning of the adaption at this location. This adapted grid was then re-input to
Palmer's flow-solver which showed a considerably sharper blunt-body shock feature (1990).

i=35

/

j=22

(a) (b) (c)

Figure 30. Hypersonic forebody flow (AFE). (a) Initial grid around the forebody;

(b) initial Mach contours; (c) adapted grid.
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3.3 Multiple-Grid Examples

Section 2.4.3 describes some of the complexities of multiple grids. The first case here
reproduces the stylized example shown in Fig. 11 to illustrate the transfer of planes from one grid

to another. The second case is a generic NASP configuration. (Davies and Deiwert, 1993)

Case 10. A Simple 3-D Grid

Example 1. Single plane transfer. Figure 31 is a reproduction of Fig. 11 from section 1. This

example shows a matching common plane that is stored separately in each grid, but contains
identical data. We will define the size of each grid as (i,j,k) of (40x15x30). If the grids had been

separated as single grids, as shown in Fig. 3i(b), the only choice would be to start the adaption

process at the common plane and to march in opposite directions. This would provide identical
adaption points for the common plane. For some problems this could be quite acceptable, but

marching in the same direction more often produces the preferred result.

(a) grid 2

matching

zone

(b)
adaption

direction

grid 2

adaption

direction,

grid I

(c) k

preferred

adaption

direction

Figure 31. Reproduction of figure 11.

To adapt multi-zoned grids as shown in Fig. 31(c), a feature is available to transfer data from one
grid to another. The adaption process in Fig. 31(c) is to:

(1) adapt grid 1 up to the common plane (/=15);
(2) transfer data from the last plane in grid 1 to the first plane in grid 2; and

(3) adapt grid 2, using the merging planes option (i.e., mgpls nonzero) for the first plane.

This sequence is described by the following input control list:

Snamel mgrid=l,ikplane=.t. $

Snamel export=.t.,mgrid=1,ikpIane=.t.,mplane=15 $

$namel import=.t.,mgrid=2,ikplane=.t.,mpIane=l $
$namel mgrid=2,mgpls=2,ikplane=.t. $

If only a subset of plane 15, grid 1 was to be transferred to grid 2 (as shown in Fig. 32), then
the range would be described by entering the non-default values of parameters is, ie,ks,ke (i.e.,

those relating to the ikplane) for both grids by

$narnel export=A.,mgrid=1,ikplane=.t,,mplane=15,is=30 $

$namel import=.t.,mgrid=2,ikplane=.t.,mplane=l,ie=lO $
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In this case, points 30<i<40 and all k points from the 15th

ikplane in grid 1 are transferred to points 1 <i<10 in the first

plane of grid 2. (Note that only is=30 on the export list and ie=lO
on the import list are required since the other range values are
the same as the default values)

Note for 2-D fil¢_. The same concept holds for 2-D files but care

must be taken since only a line is being transferred. Because only
one plane exists, ijplane=.t, and raplane=l. Only is,ie,js,je can be
used and one of these two sets must have equal first and last

values. Finally, if the export card is the first card in the adaption
set, include twod=.t.

k

Figure 32. Matching subsets.

Example 2. Multiple Transfers. It is possible to handle more than one transfer within the same
run of the code. In the example shown in Fig. 32, it is probable that the lighter shaded domain of

plane 15, grid 1 matches to a third grid, not shown. For this example, the two sets of transfers can
be entered sequentially:

$nameI export=, t.,mgrid= 1,ikplane=. t.,mplane=15,is =30 $

$namel import=.t.,mgrid=2,ikplane=.t.,mplane= l,ie= l O $

$namel export=.t.,mgrid=l,ikplane=.t.,mplane=15,ie=30 $

$namel import=.t.,mgrid=3,.ikplane=.t.,mplane=l $

Case 11. Generic NASP configuration.

This final case is the result of NASP Government Work Package #20, described by Davies

and Deiwert (1993). A two-part multiple grid defines a generic NASP vehicle configuration: one
grid (35x59x51) for the nose region and one grid (also 35x59x51) encompassing the remainder of

the body. Figure 33(a) shows the vehicle surface and three cross planes (jk planes) and Fig. 33(b)

shows the corresponding Mach contours that were used as the adaption function. The i direction
is through the vehicle centerline, j steps away from the body and k marches around the body
from the lower surface. Adaption begins at the nose and marches plane by plane towards the end

of the body, transferring data at the matching plane (grid 1, jkplane 35 to grid 2, jkplane 1). The
input control file used to produce the adapted grid shown in Fig. 33(c) is

SnameI mgrid=l,jkplane=.t.,ist=2,kstep=.t.,kst=51,kend=1,jst=lS, indq=7,nedge=1,

rdsmin=. 1,rdsmax=3.0,clam(1)=.OOl,ct(2)=.8,orthe(1)=.f.,orthe(2)=.f. $

$nameI export=.t.,mgrid=l,jkplane=.t.,mplane=35 $

SnameI irnport=.t.,mgrid=2,jkpIane=.t.,mptane=l $
SnameI mgrid=2,jkplane=.t.,kstep=.t.,kst=51,kend=l,indq=7,mgpls=4,nedge=l,

rdsmin=. 1,rdsraax=3.0,clam(1)=.OOl,ct(2)=.8,orths(2)=.f.,orthe(1)=.f.,orthe(2)=.f. $

Some of these adaption parameters need explaining: ist=2 is the starting plane since the nose at

ist=l is a plane collapsed to a single point; kst=51 and kend=l produces the best adaption direction
for kstep (compared to the result using the defaults kst=l and kend=5I); jst=15 preserves the
boundary layer; and ct(2)=.8 (more straightness for the between-planes torsion parameter)

produces a smoother adaption when looking at the other planar directions. The export and
import processes are straight forward. For the adaption of grid 2, mgpls=4 and orths(2)=.f, both

contribute to maintaining continuity across the matching plane.
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(a)

(c)

(6)

Figure 33. Generic NASP vehicle configuration. (a) Initial grid; (b) initial Mach contours; and

(c) adapted grid

68



4. REFERENCES

Davies, C.B.; and Venkatapathy, E.: The Multidimensional Self-Adaptive Grid Code, SAGE.

NASA TM-103905, July 1992.

Davies, C.B.; and Venkatapathy, E.: Application of a Solution Adaptive Grid Scheme, SAGE, to
Complex Three-Dimensional Flows. AIAA Paper 91-1594, June 1991.

Nakahashi, K.; and Deiwert, G.S.: A Self-Adaptive-Grid Method with Application to Airfoil
Flows. AIAA Paper 85-1525, July 1985.

Walatka, P.P.; Bunmg, P.G.; Pierce, L.; and Elson, P.A.: PLOT3D User's Manual, NASA TM-
101067, March 1990.

Davies, C.B.; and Venkatapathy, E." A Simplified Self-Adaptive-Grid Method, SAGE. NASA TM-
102198, October 1989.

Palmer, G.: Enhanced Thermochemical Nonequilibrium Computations of Flow Around the

Aeroassist Flight Experiment Vehicle. AIAA Paper 90-1702, 1990.

Davies, C.B.; and Deiwert, G.S.: Generic Grid Adaption. NASP Contractor Report 1143, February
1993.

69



--ii

Form Approved

REPORT DOCUMENTATION PAGE OMBNo.0704-0188
Public reporting burden for this collection of information is estimated to average i hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

co lection of informat on, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Raduct on Project (0704-0188), Wash ngton, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

, April 1995
4. TITLE AND SUBTITLE

The Multidimensional Self-Adaptive Grid code, SAGEv2

6. AUTHOR(Si '

Carol B. Davies and Ethiraj Venkatapathy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/M(_NITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

5. FUNDING NUMBERS

242-10-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

A-950056

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-110350

11. SUPPLEMENTARY NOTES

Point of Contact: Carol B. Davies, Ames Research Center, MS 230-2, Moffett Field, CA 94035-1000;

(415) 604-6204

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -- Unlimited

Subject Category 61

12b. DISTHIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The original SAGE code (Version 1) is described in NASA TM-t03905 (1992). This new report on
Version 2 includes all the information in the original publication plus all upgrades and changes to the SAGE code
since that time. The two most significant upgrades are the inclusion of a finite-volume option and the ability to
adapt and manipulate zonal-matching multiple-grid files. In addition, the original SAGE code has been upgraded
to Version 1.1 and includes all options mentioned in this report, with the exception of the multiple grid option and
its associated features. Since Version 2 is a larger and more complex code, it is suggested (but not required) that
Version 1.1 be used for single-grid applications. This document contains all the information required to run both
versions of SAGE.

The formulation of the adaption method is described in the first section of this document. The second section
is presented in the form of a user guide that explains the input and execution of the code. The third section provides
many examples.

Successful application of the SAGE code in both two and three dimensions for the solution of various
flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation
follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of
the self-adaptive grid method for complex grid structures. Modifications to the method and the simple but
extensive input options make this a flexible and user-friendly code. The SAGE code can accommodate two-
dimensional and three-dimensional, finite-difference and finite-volume, single grid, and zonal-matching

multiple grid flow problems.
14. SUBJECT TERMS

CFD, Gridding, Adaption

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified
i i

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

74
16. PRICE CODE

A04

20. LIMITATION OF ABSTRAC3 r

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18


